10/10/2020	:. GCBT Online .:
	CBRT - 2020 Question Paper Grid
Government of Goa	10 October 2020
Menu	Set Name 10102020_session Subjects Assistant Professor(Chemistry(Physical)) Display With Answer Key Display Questions Cancel
	Assistant Professor(Chemistry(Physical))
an unchanging peasantry reluctant to a gamble on the rains. Some visiona amused interest and if their efforts very limited area within what was b	Itural base and for decades and generations the picture that India Presented to the world was one of famine and of to depart from the cultural practices handed down to them by their forefathers. Indian agriculture , it was said, was aries and civil servants had sought to change all this. Their experiments at rural transformation were watched with did not meet with more than temporary and isolated success, it was because they were operating individuals and in asically an inhospitable and unresponsive administrative environment. The scale of effort was enlarged during the ng of the "grow more food campaign". But the administrative structure remained largely unaltered.
farmer was to change methods, he the farmer tilled the land in the sam the basis of which to gamble on stra whom the farmer could turn for assi knock at the doors of the Irrigation the revenue authorities and so on. I was difficult and the totality of the f	ommunity Development Programme was introduced. There were three problems that had to be tackled. First, if the had to be educated to see the possibility to change through actual demonstration in his field at no cost to himself. If he manner as his father before him, it was because tradition had no optimized risks and the farmer had no margin on ange new practices and risk not merely a financial loss but his very survival. Second, there was no one agency to istance or advice. If he wanted better seeds, he had to go to the Agriculture Department. For irrigation he had to Department. Roads were the responsibility of the Public Works Department. Land problems had to be taken up with in short, the administration was totally fragmented at the point which touched the life of the farmer. Coordination armer's problem could never be adequately comprehended, let alone ameliorated, by the administration. Third, even note rural transformation and the farmers, were willing, how was the new knowledge to be transmitted not merely to
was established under a chain of collevel worker. Instead of having to go authority with which all the executiv under the Community Development peasant. Once the farmer was persu Meanwhile, the establishment of a N	amme sought to provide answers to these three problems. Something in the nature of the single-line administration mmand running through the District Development Officer and Block Development Officer to the multipurpose village to to several departments to get anything done, the farmer could now deal with a single community development e agencies involved in rural development were associated. The many thousands of field demonstrations laid out Programme demonstrated the possibility of change in a manner that carried conviction and at no risk to the laded, his alleged age-old conservatism vanished and the next problem was to satisfy his ever-growing demands. Jational Extension Service first time created a permanent transmission system for the propagation and thods, not just in isolated pockets, but over very wide areas.
Itemcode : CP1071 Q1 : Which of the following was	the objective of launching Community Development Programme?
 (a) To eradicate illiteracy of the run (b) To switch over to me mechanis (c) To solve the diverse problems of (d) To minimize farmer's financial Key: C 	ation in agro sector of farmers on a single platform
Itemcode : CP1072 Q2 : For the people in the world	, the image of Indian Village is that of
 (a) an opponent of traditionalism at (b) a rule-bound, conservative and (c) a visionary and a perfect gamb (d) an inhospitable and unresponsitives Key: B 	l culture-groomed person Ier
Itemcode : CP1073	
Q3 : The experiments undertake (a) Changes in administrative envi (b) temporary and isolated success (c) evolution of new operational st (d) upliftment of peasants and rura Key: C	s rategies
Itemcode : CP1074 Q4 : What was the probable disa	advantage of the fragmented administration to the farmers?
 (a) Loss of time, money and energies (b) exposure to novel techniques at (c) Availability of manures, fertilise (d) Uncertainty of rains during the Key: A 	and strategies ers and seeds
Itemcode : CP1075 Q5 : What was the impact of the	ese demonstrations on the farmers?
 (a) Their unreasonable demands in (b) Their tendency to cling to past (c) National Extension Service was (d) Their standard of living remain Key: B 	ncreased disproportionately traditions vanished s established by them
Itemcode : CP1051	

The failure of palm readers to identify the causal connection between the lines on a person's hands and his or her life indicates that the theory of palm reading is: Q6 :

(a) Internally incoherent.
(b) Inadequate.
(c) Unfruitful.
(d) Dysfunctional.
Key: A

Itemcode : CP1052

Q7: As a result of the application of Ockham's razor, naturalistic explanations are preferred to supernatural explanations because:

(a) Naturalistic explanations lead to entirely new ways of viewing the world.

- Naturalistic explanations are preferred by atheists.
- (c) Supernatural explanations are inconsistent with well confirmed scientific theories. (d) Supernatural explanations are always contaminated by religious beliefs.

Key: D

Itemcode : CP1053

If January 1st, 2007 is Monday, what was the day on 1st January 1995? 08:

- (a) Sundav
- (b) Monday
- Friday (c)
- (d) Saturday
- Key: A

Itemcode : CP1054

- 09: Statements I All students are ambitious II All ambitious persons are hard working Conclusions: i. All students are hard-working
 - ii. All hardly working people are not ambitious Which of the following is correct?
- (a) Only (i) is correct
- (b) Only (ii) is correct(c) Both (i) and (ii) are correct
- (d) Neither (i) nor (ii) are correct
- Key: C

Itemcode : CP1055

Q10: Read the given argument and answer the question that follows.

Argument

Here's another reason to get vaccinated against measles - researchers have found that the measles virus makes kids' immune systems "forget" most of what they have learned, leaving children vulnerable to other diseases for as long as three years. "Our findings suggest that measles vaccines have benefits that extend beyond just protecting against measles itself," said Michael Mina, a medical student at Emory University who worked on the study while doing postdoctoral research at Princeton University.

Which of the following, if true, would most strengthen the argument made in favour of the vaccination against measles?

- (a) Studies have suggested that vaccines can have broader benefits than simply protecting against a single disease.
- (b) If you get measles, three years later, you could die from something that you would not die from had you not been infected with measles.
 (c) Various scientists are working to find out whether reducing measles incidence will cause a drop in deaths from other infectious diseases.
 (d) The findings, published in the journal Science, help explain why deaths and illnesses from a range of diseases plummet in countries after they
- introduced measles vaccine campaigns. Key: D

Itemcode : CP1056

- Q11: Read the given argument and answer the question that follows.
- Arguments

It's no surprise that, in an era of rapid change, island nations will be among the first to feel the effects of climate change. A common sentiment shared among the islands of the Pacific is that they suffer a great deal from the phenomenon while contributing the least to the problem. These islands are located in a region that's sandwiched by two of the world's largest carbon-emitting countries, the United States and China, which means that any concerns they voice on the global stage often come out as mere whispers.

Which of the following, if true, would support the 'common sentiment' mentioned in the passage?

(a) Plastic pollution in oceans is an enormous problem globally but the island nations suffer the most due to this, as plastic harms the very aquatic life that island nations depend on for their economic progress.

(b) Carbon emissions are directly proportional to the size of the population of a country and the resulting increase in sea-level poses the greatest threat

to the low-lying island nations, despite their relatively small populations. (c) Island nations have banded together in the international arena to call on other countries to limit their emissions in order to curtail the devastating impacts of climate change on their vulnerable nations.

(d) The island nations are more vulnerable to the physical impacts of climate change due to a number of socioeconomic stressors like high population growth, over-pumping of groundwater, pollution, etc.

Itemcode : CP1057

Key: B

012: The following table shows the information related to population and a few other parameters for 5 states of India for the year 2010.

States	Population (in Lakhs)	Rural Population (in %)	Literacy Rate (in %)	No. of Women per 1000 Men
Р	720	40	50	920
Q	400	70	55	914
R	420	55	45	970
S	350	64	44	958
Т	640	30	60	990

In rural region of state P, all women i.e. 188 Lakh are literate and all men are illiterate. The literacy rate among urban men in state P is at least?

(a) 40%

(b) 0%

(c) 4%

(d) None of these Key: D

Itemcode : CP1058

013:

:. GCBT Online .:

The following table shows the information related to population and a few other parameters for 5 states of India for the year 2010.

States	Population (in Lakhs)	Rural Population (in %)	Literacy Rate (in %)	No. of Women per 1000 Men
Р	720	40	50	920
Q	400	70	55	914
R	420	55	45	970
S	350	64	44	958
Т	640	30	60	990

If the literate population, staying in urban area, of each state is maximum possible, then in how many states urban population can be 100% literate?

(a) 4 (b) 3 (c) 2 (d) 1 Key: **B**

Itemcode : CP1059

Q14 : The following table shows the information related to population and a few other parameters for 5 states of India for the year 2010.

States	Population (in Lakhs)	Rural Population (in %)	Literacy Rate (in %)	No. of Women per 1000 Men
Р	720	40	50	920
Q	400	70	55	914
R	420	55	45	970
S	350	64	44	958
Т	640	30	60	990

In each state 10% of rural population migrates to urban areas of the same state. If this migrant population is illiterate then which state will have lowest literacy rates in its urban areas?

(a) Q (b) R (c) S

(d) Cannot be determined Key: **D**

Itemcode : CP1060

015: The following table shows the information related to population and a few other parameters for 5 states of India for the year 2010.

States	Population (in Lakhs)	Rural Population (in %)	Literacy Rate (in %)	No. of Women per 1000 Men
Р	720	40	50	920
Q	400	70	55	914
R	420	55	45	970
S	350	64	44	958
Т	640	30	60	990

If 70% of literate population of each state lives in urban areas, then which state has the lowest percentage of literacy in rural areas?

(a) Q (b) R (c) S

(d) Cannot be determined

Key: C

Itemcode : CP1061

Q16: The term Ground Stroke is associated with which of the following games?

- (a) Cricket
- (b) Badminton
- (c) Tennis
- (d) Draughts
- Key: C

Itemcode : CP1062

Q17: The saffron colour in the national flag signifies

- (a) truth and peace
- (b) courage and Sacrifice(c) faith and chivalry
- (d) None of the above
- Key: **B**

Itemcode : CP1063

Q18: The significance of the lotus symbol is

- (a) culture and civilisation
- (b) peace

(c) justice

(d) sign of mourning, in protest Key: A

Itemcode : CP1064

Q19: The Reliance Cup was earlier known by the name of

(a) Benson and Hedges Cup

(b) McDowell's Challenge Cup (c) Prudential Cup

(d) Rothmans Cup

Key: C

Itemcode : CP1065

Q20: 'Apsara' is the name of India's first

- (b) Helicopter(c) Nuclear Reactor
- (d) Ground Battle Tank
- Key: C

Itemcode : CP1066

Q21: Raja Ravi Verma, was famous in which of the fields?

(a) Painting

(b) Politics

- (c) Dance (d) Music
- Key: A

Itemcode : CP1067

Q22: The first hand glider was designed by ...?

- (a) Leonardo DaVinci
- (b) The Wright brothers (c) Francis Rogallo
- (d) Galileo
- Key: A

Itemcode : CP1068

Q23 : In which Indian state did the game of Polo originate? (a) Meghalaya

- (b) Rajasthan
- (c) Manipur(d) West Bengal
- Key: C

Itemcode : CP1069

Q24 : Which of the following is a Manipuri version of Hockey?

- (a) Khong Kangjei
- (b) Hiyang Tanaba
- (c) Yubi Lakpi (d) None of above
- Key: A

Itemcode : CP1070

Q25: Who is to be conferred with the 2020 Swami Vivekananda Karmayogi Award?

- (a) Jadav Payeng
- (b) Rajendra Singh(c) Vandana Shiva(d) Sunita Narain
- Key: A
- Itemcode : CP1001

Q26 : The ionic strength of a solution obtained by mixing aqueous solution of 20 mL 0.05 M MgCl₂, 30 mL of $0.05\ M$ Na_2SO4, 25 mL of 0.04 M AlCl_3 and 25 mL of 0.01 M glucose is

- (a) 0.423 (b) 0.135 (c) 0.345
- (d) 0.624
- Key: B

Itemcode : CP1002 Q27 : Using Debye-Huckel limiting law, the mean ionic activity co-efficient of 0.01 M KCl solution at 298 K is [Given A=0.51 for water at 298 K]	
(a) 0.89	
(b) 0.62	
(c) 0.36	
(d) 0.43	
Key: A	

Itemcode : CP1003

(b) 2.94×10^{33} (c) 3.94×10^{33} (d) 1.94×10^{37} Key: D	(a) 2.04×10^{21}
(c) 3.94×10^{33} (d) 1.94×10^{37}	(a) 2.94×10^{34} (b) 2.94×10^{33}
(d) 1.94×10^{37}	
Key: D	
	Key: D
temcode : CP1004	

Ag | AgI (satd. Sol) | AgI(s) | Ag

(a) 8.58×10^{-17}

(b) 3.58×10^{-14}

(c) 4.58×10^{-19}

10/10/2020 (d) 2.92 × 10⁻¹⁵ Key: **A** :. GCBT Online .:

Key: A	
_	
	2 : CP1005
Q30 :	The potential for the following cell is 0.490 V at 298 K
	Pb PbCl ₂ (s) PbCl ₂ (soln) AgCl(s) Ag The relation between its emf and temperature is given as
	$E = A - (1.86 \times 10^4 \text{ V K}^{-1})(T - 25 \text{ K})$
	The Δ H value for the cell reaction at 298 K is [Given: 1F=96500 C mol ⁻¹]
(2)	
) 265.5 J mol ⁻¹
	5 345.5 J mol ⁻¹
	5 267.6 J mol ⁻¹
(d) -185	254.5 J mol ⁻¹
Key: C	
Itomcodo	2 : CP1006
-	A non-volatile hydrocarbon has 94.4% of carbon. When 2 g of this compound is dissolved in 100 g of
1	benzene, the vapour pressure of benzene is lowered from 74.66 Torr to 74.01 Torr. The molecular
3	formula of the hydrocarbon is
(a) C T	
(a) $C_{18}F$	
(b) C ₁₄ H	
(c) C ₁₆ H (d) C ₁₈ H	
()	10
Key: B	
Itemcode	2 : CP1007
032 :	A solution contains 0.512 g of a solute A (molar mass 128.2 g mol ⁻¹) in 50 g of CCl ₄ gives a boiling point
	elevation of 0.402 K. Another solution with a different solute (B) of 0.6216 g in same amount of solvent
	yields a boiling point elevation of 0.647 K. The molar mass of B is
(a) 96.6	
(b) 75.6	g mol ⁻¹
(c) 112.0	5 g mol ⁺
(d) 82.5	g mol*
Key: A	
	A solution containing 6.69 g of Ca(NO ₃) ₂ [Mol wt=164] in 100 g of water has vapour pressure of 746.9 Forr at 100°C. The degree of dissociation of the salt is
	on at 100 C. The degree of dissociation of the sait is
(a) 85%	
(b) 46%	
(c) 38%	
(d) 68%	
Key: D	
	2 : CP1009
Q34 :	$2NO + Cl_2 \rightarrow 2NOCl$, for this reaction, it was found that on doubling the concentration of both the
	reactants the rate increases eight fold, but on doubling the concentration of chlorine alone, the rate only
	doubles. The overall rate of the reaction is
(a) 1	
	do first order
(c) 2	
(d) 3	
Key: D	
Itomcodo	2 : CP1010
-	In the following reaction, 60% decomposition of A takes place in 20 minutes and 75% B and 25% C are
	resent. The values of k_1 and k_2 are
5	
	A k
	- C
(a)	0.024 k - 0.011
023	$0.034, k_2 = 0.011$
	$0.066, k_2 = 0.022$ $0.054, k_2 = 0.018$
1.2	$0.054, k_2 = 0.018$ $0.013, k_2 = 0.038$
(d) k ₁ =0 Key: A	.013, N/ 0.030
Itemcode	2 : CP1011
	The rate constant for the decomposition of a certain substance is 2.80×10^{-3} L mol ⁻¹ s ⁻¹ at 30.0°C and 1.38×10^{-2} L mol ⁻¹ s ⁻¹ at 50.0°C. The activation energy (E _a) and pre-exponential factor (A) values are
	$[R=8.3145 \text{ J K}^{-1} \text{ mol}^{-1}]$
(a) _{Ea} =	$= 64.96 \text{ kJ mol}^{-1}$, A= $4.37 \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1}$
7,000,000,000,000,000	84.96 kJ mol ⁻¹ , $A=4.37\times10^{12}$ L mol ⁻¹ s ⁻¹
(c) $E_{a} =$	84.96 kJ mol ⁻¹ , $A = 9.37 \times 10^8 L mol^{-1} s^{-1}$

(d)	$E_a = 64.96 \text{ kJ mol}^{-1}$, $A = 9.37 \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}$
Key	: A

Itemcode : CP1012
Q37: The mole fraction of acetone is 0.53 in a mixture of acetone and chloroform where their partial molar
volumes are 74.17 cm ³ mol ⁻¹ and 80.24 cm ³ mol ⁻¹ , respectively (Mol wt acetone = 58 gmol ⁻¹ , Mol wt. chloroform= 119.5 gmol ⁻¹). The volume of 1 kg of solution will be
(a) $_{375.4 \text{ cm}^3}$
(b) 886.2 cm^3
(c) 462.4 cm^3
(d) 665.6 cm^3
Key: B
Itemcode : CP1013
Q38: In a methanol and water mixture the mole fraction of methanol is 0.39 and its partial molar volume is
$39.2 \text{ cm}^3 \text{mol}^{-1}$. The partial molar volume of water in the mixture is [Given: density of solution = 0.91 g cm ⁻³ , Mol wt. of methanol = 32 g mol ⁻¹ , Mol. Wt. of water = 18 g mol ⁻¹)
ciii, Morwi, or incluator = 52 g nor, Mor. wit or water = 18 g nor)
(a) 17.2 cm ³ mol ⁻¹
(b) $26.2 \text{ cm}^3 \text{ mol}^{-1}$
(c) $11.2 \text{ cm}^3 \text{ mol}^{-1}$ (d) $35.2 \text{ cm}^3 \text{ mol}^{-1}$
(d) 35.2 cm ⁻ mol ⁻ Key: A
Itemcode : CP1014
Q39: The fugacity coefficient of a certain gas at 200K and 50 bar is 0.72. The difference of its molar
Gibbs energy from that of a perfect gas in the same state is (R=8.314 J K ⁻¹ mol ⁻¹)
(a) -0.85kJmol^{-1}
(b) -0.55 kJmol^{-1}
(c) 0.85 kJmol^{-1}
(d) -0.35 kJmol^{-1}
Key: B
Itemanda + CD101E
<u>Itemcode</u> : CP1015 Q40 : The mean activity coefficients of HBr in three dilute solutions at 25° C are 0.930 (at 5 mmol kg ⁻¹) 0.907
Q40: The mean activity coefficients of HBr in three dilute solutions at 25°C are 0.930 (at 5 mmol kg ⁻¹), 0.907 (at 10.0 mmol kg ⁻¹) and 0.879 (at 20 mmol kg ⁻¹). The value of B in the extended Debye-Huckel law will
be same in each case. The value of B is
[Given constants A=0.509, C=0 and the denominator in the expression of extended Debye-Huckel law is $1+B\sqrt{\mu}$ where μ is the ionic strength]
$1+B_{\chi}\mu$ where μ is the forme strength j
(a) 2.01
(b) 5.01
(c) 4.01
(d) 1.01 Key: A
Itemcode : CP1016
Q41: The change in the Gibbs energy of a constant pressure process fits the expression $\Delta G = -73.1+42.8$ T. The
value of ΔS is (Given ΔG in J and T in K)
(a) $+42.8 \text{ JK}^{-1}$
(b) $+62.8 \text{ JK}^{-1}$ (c) -62.8 JK^{-1}
(d) -42.8 JK^{-1}
Key: D
Itemcode : CP1017
Q42: The change in the Gibbs energy of 1.0 dm ³ of benzene when the pressure acting on is increased from 1.0
atm to 100.0 atm is (Given: 1 atm= 1.013×10 ⁵ Pa)
(a) 30 kJ
(b) 10 kJ
(c) 40 kJ
(d) -30 kJ
Key: B
Itemcode : CP1018
Q43 : The change in Gibbs energy that accompanies the oxidation of $C_6H_{12}O_6$ (s) to carbon dioxide and water
vapor at 25°C is 2828 kJ mol ⁻¹ . The amount of glucose to be consumed by a person of mass 65 kg who
needs to climb through 10 m height is (acceleration of gravity, $g = 9.81 \text{ ms}^{-2}$)
(a) 0.93 g
(b) 0.23 g (c) 0.82 g
(d) 0.41 g
(a) 0.41 g Key: D

:. GCBT Online .:

$\begin{array}{l} \textbf{Q4}: The two major components of air infragen and oxygen are mixed to form air at 23% K. The mole fractions of the (nobar) Gabba energy (AG2) and the(molar) entropy (AG2) of mixing? (R=831451 K2 mol2) (0) -131 J and 2 +4351 K2 mol2 (0) -131 J and 2 +4351 K2 mol2 (0) -131 J and 2 +4351 K2 mol2 (0) -431 J and 2 +4351 K2 mol2 (0) -4351 K2 mol2 (0) -4352 K2 mol2 m$	
[0] - 13.11 Jr mol2, 43.81 JK2 mol2, 44.81 JK2 mol2,	
[ky: C limits : CP1020 Q45: The first order reflection from a crystal plane in a cubic crystal occurs at 13 ⁵ 41'. The Miller indices of the plane is [Given: a=5.63 Å, $\lambda = 1.54$ Å, ant $\theta = 0.056$] (i) (1.22) (i) (1.12) (i) (1.12) (ii) (1.12) (iii) (1.12) (iv) (1.12)	
Q45 : The first order reflection from a crystal plane in a cubic crystal occurs at 13 ⁶ 41'. The Miller indices of the plane in [Given: $a = 5.03 \text{ Å}, \lambda = 1.54 \text{ Å}, \sin^2 \theta = 0.050$] (a) (1,2,2) (b) (1,1,0) (c) (1,1,1) (d) (1,1,2) Key: C Itemcode: : C91021 Q46: A metal produces reflection at 20 = 47.2° using X-ray of wave length 179 pm. Considering this as a first order reflection from the 110 planes of a bcc lattice, the edge length (in pm) of the cube is (i) 237.5 (j) 250.5 (i) 340.5 (ii) 447.5 Key: D Itemcode: : CP1022 Q47: If <i>r</i> represents the radius of spheres constituting unit cells then the edge lengths of the fcc, bcc and simple cubic unit culls are representively. (a) 4r/3, 2, $\sqrt{2}r$, 2 <i>r</i> (a) 4r/3, 2, $\sqrt{2}r$, 2 <i>r</i> (i) 2/7, 4r/3, 2, $\sqrt{2}r$ (ii) 2/7, 4r/3, 2, $\sqrt{2}r$ (iii) 2/7, 4r/3, 2, $\sqrt{2}r$ (iii) 2/7, 4r/3, 2, $\sqrt{2}r$ (iii) 2/7, 4r/3, 2, $\sqrt{2}r$ (iiii) 2/7, 4r/3, 2, $\sqrt{2}r$ (iiii) 2/7, 4r/3, 2, $\sqrt{2}r$ (
(b) (1,1,0) (c) (1,1,1) (d) (1,1,2) Key: C	
(c) (1,1,2) (g) (1,2,2) (g) (1,2,2) (g) (1,2,2,2) (g) (1,2,2,2) (g) (1,2,2,2,2) (g) (1,2,2,2,2) (g) (1,2,2,4,2,3,2) (g) (1,2,2,4,4,3,2) (g) (1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	
key: C Itemcode: CP1021 Q46 : Å metal produces reflection at $2\theta = 47.2^{\circ}$ using X-ray of wave length 179 pm. Considering this as a first order reflection from the 110 planes of a bcc lattice, the edge length (in pm) of the cube is (a) 237.5 (b) 350.5 (c) 340.5 (c) 340.5 (c) 447.5 Key: D Itemcode: CP1022 Q47 : If: represents the radius of spheres constituting unit cells then the edge lengths of the fcc, bcc and simple cubic unit cells are respectively. (c) $27, 47\sqrt{3}, 27, 27, 27$ (c) $27, 47\sqrt{3}, 27, 27, 7$ (c) $27, 47\sqrt{3}, 27, 82/7$ (c) $27, 47\sqrt{3}, 27, 82$	
Immode: CP1021 Q46 : À metal produces reflection at $2\theta = 47.2^{\circ}$ using X-ray of wave length [79 pm. Considering this as a first order reflection from the 110 planes of a loc lattice, the edge length (in pm) of the cube is (i) 237.5 (i) 340.5 (i) 340.5 (i) 340.5 (ii) 447.5 Key: D Therefore a by 200 of spheres constituting unit cells then the edge lengths of the fce, loc and simple cubic unit cells are respectively. (i) $4r\sqrt{3}, 2\sqrt{2}r, 2r$ (i) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (i) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (i) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (i) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (i) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (ii) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (iii) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 6r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $2\sqrt{2}r, 7r/\sqrt{3}, 2\sqrt{2}r$ (iv) $100rm, 370 pm$ (iv) $101 pm, 372 pm$ (iv) $102 pm, 372 pm$ (iv) $102 pm, 372 pm$ (iv) $102 cm, 372 pm$ (iv)	
Q46 : A metal produces reflection at $2\theta = 47.2^9$ using X-ray of wave length 179 pm. Considering this as a first order reflection from the 110 planes of a bcc lattice, the edge length (in pm) of the cube is (a) 237.5 (b) 550.5 (c) 340.5 (c) 447.5 (b) 447.5 (c) 447.5 (c) 447.5 (c) 2.27.7 (c) 47.47.5 (c) 2.27.7 (c) 47.47.5 (c) 2.27.7 (c) 47.47.5 (c) 2.27.7 (c) 2.47.7.2.7 (c) 2.47.7 (c) 2.47.7.47.47.3.27.7 (c) 2.47.47.47.3.27.7 (c) 2.47.7.47.47.3.27.7 (c) 2.27.47.47.47.3.27 (c) 2.47.7.47.47.3.27.7 (c) 2.27.47.47.47.3.27 (c) 2.47.7.47.47.3.27.7 (c) 2.27.47.47.47.3.27 (c) 2.27.47.47.47.5.27.7 (c) 2.27.47.47.47.5.27.7 (c) 2.27.47.47.47.5.27.7 (c) 2.27.47.47.47.5.27.7 (c) 2.27.47.47.47.5.27.7 (c) 2.27.47.47.5.27.7 (c) 2.27.47.47.47.5.27.7 (c) 2.27.47.47.5.27.7 (c) 2.27.47.47.5.27.7 (c) 2.27.47.47.5.27.7 (c) 0.10.07.7 (c) 0.17.67.7	
(b) 550.5 (c) 340.5 (d) 447.5 Key: D	
(d) 447.5 Key: D lemcode: CP1022 Q47: If <i>r</i> represents the radius of spheres constituting unit cells then the edge lengths of the fcc, bcc and simple cubic unit cells are respectively. (a) $4r/\sqrt{3}, 2\sqrt{2}r, 2r$ (b) $4r/\sqrt{3}, 2\sqrt{2}r, 2r$ (c) $2r, 4r/(3, 2\sqrt{2}r)$ (c) $2\sqrt{2}r, 4r/(3, 2\sqrt{2}r)$ (c) $12\sqrt{2}m, 430 \text{ pm}$ (c) $1120 \text{ pm}, 370 \text{ pm}$ (c) $1120 \text{ pm}, 372 \text{ pm}$ (c) $150 \text{ fm}, 372 \text{ pm}$ (c) $105 \text{ fm}, 372 \text{ pm}$ (c)	
Itemcode : CP1022 Q47 : If r represents the radius of spheres constituting unit cells then the edge lengths of the fcc, bcc and simple cubic unit cells are respectively. (a) $4\pi/\sqrt{3}, 2\sqrt{2}r, 2r'$ (b) $4\pi/\sqrt{3}, 2\sqrt{2}r, 2\sqrt{2}r$ (c) $2r, 4\pi/\sqrt{3}, 2\sqrt{2}r$ (c) $2r, 4\pi/\sqrt{3}, 2\sqrt{2}r$ (d) $2\sqrt{2}r, 4\pi/\sqrt{3}, 2\pi$ Key: D Itemcode : CP1023 Q48 : The radial node (s) of 3s orbital of an H-atom is situated at [Given for a hydrogenic atom, $R_{n,l} = \frac{2}{243^{1/2}} \left(\frac{x}{a_0}\right)^{\frac{1}{2}} \left(3 - \frac{2xr}{a_0} + \frac{2x^2 \pi^3}{9a_0^2}\right) e^{-2\pi/3a_0}$ where $a_0 = 52.9 pm$] (a) 120 $pm, 430 pm$ (b) 101 $pm, 376 pm$ (c) 150 $pm, 372 pm$ Key: B Itemcode : CP1024 Q49 : The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^2}} e^{-r/a_0}$) (a) $0.35a_0$ (b) $0.17a_0$ (c) $0.35a_0$ (c) $0.33a_0$ (d) $1.06a_0$ (c) $0.33a_0$ (e) $r.07a_0$ (c) $0.37a_0$ (fernode : CP1025 Q50: The expectation value of $1/r$ for a hydrogenic 2s orbital is	
Q47 : if <i>r</i> represents the radius of spheres constituting unit cells then the edge lengths of the fcc, bcc and simple cubic unit cells are respectively. (a) $4r/\sqrt{3}, 2\sqrt{2}r, 2r$ (b) $4r/\sqrt{3}, 2r, 2\sqrt{2}r$ (c) $2r, 4r/\sqrt{3}, 2\sqrt{2}r$ (c) $2r, 4r/\sqrt{3}, 2\sqrt{2}r$ (d) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (e) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (f) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (g) $2\sqrt{2}r, 4r/\sqrt{3}, 2\sqrt{2}r$ (h) $2\sqrt{2}r, 4r/\sqrt{3}, 2r$ (key: D Itemcode : CP1023 Q48 : The radial node (s) of 3s orbital of an H-atom is situated at [Given for a hydrogenic atom, $R_{n,t} = \frac{2}{243^{2/2}} \left(\frac{x}{a_0}\right)^{\frac{1}{2}} \left(3 - \frac{22r}{a_0} + \frac{2x^2r^3}{a_0}\right) e^{-2r/3a_0}$ where $a_0 = 52.9 \text{ pm}$] (a) $120 \text{ pm}, 430 \text{ pm}$ (b) $101 \text{ pm}, 376 \text{ pm}$ (c) $150 \text{ pm}, 372 \text{ pm}$ (d) $120 \text{ pm}, 372 \text{ pm}$ Key: B Itemcode : CP1024 Q49 : The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{na_0^2}} e^{-r/a_0}$) (c) $0.53a_0$ (d) $1.05a_0$ (e) $0.35a_0$ (d) $1.06a_0$ Key: A Itemcode : CP1025 Q50 : The expectation value of 1/r for a hydrogenic 2s orbital is	
(b) $4r/\sqrt{3}, 2r, 2\sqrt{2}r$ (c) $2r, 4r/\sqrt{3}, 2r/2r$ (d) $2\sqrt{2}r, 4r/\sqrt{3}, 2r/2r$ (d) $2\sqrt{2}r, 4r/\sqrt{3}, 2r$ Key: D The radial node (s) of 3s orbital of an H-atom is situated at [Given for a hydrogenic atom, $R_{n,l} = \frac{2}{245^{1/2}} \left(\frac{x}{a_0}\right)^{\frac{5}{2}} \left(3 - \frac{22r}{a_0} + \frac{22^2r^3}{9a_0^2}\right) e^{-Zr/3a_0}$ where $a_0 = 52.9 \ pm$] (a) $120 \ pm, 430 \ pm$ (b) $101 \ pm, 376 \ pm$ (c) $150 \ pm, 372 \ pm$ Key: B The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^5}} e^{-r/a_0}$) (a) $0.35a_0$ (b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A The expectation value of 1/r for a hydrogenic 2s orbital is	
(c) $2r_{*}4r/\sqrt{3}, 2\sqrt{2}r_{*}$ (d) $2\sqrt{2}r_{*}4r/\sqrt{3}, 2r_{*}$ Key: D Itemcode : CP1023 Q48 : The radial node (s) of 3s orbital of an H-atom is situated at [Given for a hydrogenic atom, $R_{n,l} = \frac{2}{243^{1/2}} \left(\frac{x}{a_{0}}\right)^{\frac{1}{2}} \left(3 - \frac{22r}{a_{0}} + \frac{22^{2}r^{2}}{a_{0}}\right)e^{-2r/3a_{0}}$ where $a_{0} = 52.9 \text{ pm}$] (a) 120 pm, 430 pm (b) 101 pm, 376 pm (c) 150 pm, 372 pm Key: B Itemcode : CP1024 Q49 : The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_{0}^{2}}}e^{-r/a_{0}}$) (a) $0.35a_{0}$ (b) $0.17a_{0}$ (c) $0.53a_{0}$ (d) $1.06a_{0}$ Key: A Itemcode : CP1025 Q50 : The expectation value of 1/r for a hydrogenic 2s orbital is	
(d) $2\sqrt{2} r$, $4r/\sqrt{3}$, $2r$ Key: D Iteracode : CP1023 Q48 : The radial node (s) of 3s orbital of an H-atom is situated at [Given for a hydrogenic atom, $R_{n,l} = \frac{2}{243^{3/2}} \left(\frac{Z}{a_0}\right)^{\frac{1}{2}} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^{2}r^{2}}{9a_0^{\frac{1}{2}}}\right) e^{-Zr/3a_0}$ where $a_0 = 52.9 \ pm$] (a) 120 pm , 430 pm (b) 101 pm , 376 pm (c) 150 pm , 372 pm (d) 120 pm , 372 pm Key: B Iteracode : CP1024 Q49 : The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^{\frac{1}{2}}}} e^{-r/a_0}$) (a) $0.35a_0$ (b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A Iteracode : CP1025 Q50 : The expectation value of 1/r for a hydrogenic 2s orbital is	
Itemcode : CP1023 Q48 : The radial node (s) of 3s orbital of an H-atom is situated at [Given for a hydrogenic atom, $R_{n,l} = \frac{2}{243^{3/2}} \left(\frac{Z}{a_0}\right)^{\frac{1}{2}} \left(3 - \frac{2Z^2}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$ where $a_0 = 52.9 \ pm$] (a) 120 pm, 430 pm (b) 101 pm, 376 pm (c) 150 pm, 372 pm Key: B Itemcode : CP1024 Q49 : The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^2}} e^{-r/a_0}$) (a) $0.35a_0$ (b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A	
Q48 :The radial node (s) of 3s orbital of an H-atom is situated at [Given for a hydrogenic atom, $R_{n,l} = \frac{2}{243^{2/2}} \left(\frac{x}{a_0}\right)^{\frac{1}{2}} \left(3 - \frac{22r}{a_0} + \frac{22^2r^5}{9a_0^2}\right) e^{-2r/3a_0}$ where $a_0 = 52.9 pm$](a) 120 pm, 430 pm (b) 101 pm, 376 pm (c) 150 pm, 372 pm (d) 120 pm, 372 pm Key: BItemcode : CP1024 Q49 :C49 :The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^2}} e^{-r/a_0}$)(a) .0.35a_0 (b) 0.17a_0 (c) 0.53a_0 (d) 1.06a_0 Key: AItemcode : CP1025 Q50 :C950 :The expectation value of 1/r for a hydrogenic 2s orbital is	
Ite name node (6) of 35 oftend of an Fr and matter at [Given for a hydrogenic atom, $R_{n,l} = \frac{2}{243^{1/2}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} \left(3 - \frac{22r}{a_0} + \frac{22^2 r_0^3}{9a_0^2}\right) e^{-Zr/3a_0}$ where $a_0 = 52.9 \ pm$] (a) 120 pm, 430 pm (b) 101 pm, 376 pm (c) 150 pm, 372 pm Key: B	
(a) 120 pm, 430 pm (b) 101 pm, 376 pm (c) 150 pm, 372 pm (d) 120 pm, 372 pm Key: B	
(b) 101 pm, 376 pm (c) 150 pm, 372 pm (d) 120 pm, 372 pm Key: B	
(c) $150 \text{ pm}, 372 \text{ pm}$ (d) $120 \text{ pm}, 372 \text{ pm}$ Key: B	
(d) 120 pm, 372 pm Key: B	
Key: B $\frac{\text{Itemcode} : CP1024}{Q49 :}$ The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^2}} e^{-r/a_0}$) (a) $0.35a_0$ (b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A $\frac{\text{Itemcode} : CP1025}{Q50 :}$ The expectation value of 1/r for a hydrogenic 2s orbital is	
Q49: The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^s}} e^{-r/a_0}$) (a) $0.35a_0$ (b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A Itemcode : CP1025 Q50: The expectation value of $1/r$ for a hydrogenic 2s orbital is	
Q49 : The radius at which the probability of finding an electron at a point in the H-atom fall to 50% of its maximum value is (given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$) (a) $.0.35a_0$ (b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A Itemcode : CP1025 Q50 : The expectation value of $1/r$ for a hydrogenic 2s orbital is	
(a) $.0.35a_0$ (b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A	
(b) $0.17a_0$ (c) $0.53a_0$ (d) $1.06a_0$ Key: A <u>Itemcode</u> : CP1025 Q50 : The expectation value of $1/r$ for a hydrogenic 2s orbital is	
(d) 1.06a ₀ Key: A <u>Itemcode</u> : CP1025 Q50 : The expectation value of 1/r for a hydrogenic 2s orbital is	
Key: A Itemcode : CP1025 Q50 : The expectation value of 1/r for a hydrogenic 2s orbital is	
Itemcode : CP1025 Q50 : The expectation value of 1/r for a hydrogenic 2s orbital is	
Q50 : The expectation value of $1/r$ for a hydrogenic 2s orbital is	
The expectation value of $1/r$ for a hydrogenic 2s orbital is	
$\psi_{2s} = \frac{1}{2\sqrt{8\pi}} \left(\frac{z}{a_0}\right)^{\frac{s}{2}} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0} [\text{Given: } \int_{0}^{\infty} x^n e^{-\alpha x} dx = \frac{n!}{\alpha^{n+1}}]$	
(a) $\frac{Z}{2a_0}$	
(b) $\frac{Z}{3a_0}$	
(c) $\frac{Z}{a_0}$	
(d) $\frac{Z}{4a_0}$	
Key: D	

Itemcode : CP1026

10/10/2020	:. GCBT Online .:
	rcentage change in a given energy level of a particle in a cubic box when the length of the edge of
the cut	be is decreased by 10% in each direction is
(a) 52%	
(b) 43%	
(c) 35%	
(d) 23 %	
Key: D	
constar	027 brations of ³⁵ Cl ₂ molecule can be assumed as equivalent to that of harmonic oscillator with force at $k = 329 \text{ Nm}^{-1}$. The zero-point energy of vibration of this molecule is (mass of ³⁵ Cl atom is 8 u, 1u= 1.66054 × 10 ⁻²⁷ kg, $h=6.626 \times 10^{-34} \text{J s}$).
(a) 9.61×10 ⁻²² J (b) 9.61×10 ⁻²⁹ J	
(c) 5.61×10^{-21} J (d) 5.61×10^{-20} .	
(a) 5.61×10 . Key: C	
Itemcode : CP1	028
(L=2.94 double highest	hear conjugated polyene β -carotene can be considered as particle in one-dimensional box 4 nm) where 22 π electrons are delocalized over the whole system with 10 single and 11 bonds. The wavelength (in nm) of the photon which will excite an electron from the occupied energy level to the lowest un-occupied energy level is (mass of electron= 10^{-31} kg, $c = 2.998 \times 10^8$ ms ⁻¹ , $h=6.626 \times 10^{-34}$ J s)
(a) <u>840</u>	
(b) 1240	
(c) 440 (d) 640	
Key: B	
	werage distance distance of 1s electron from the nucleus of H-atom is $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0} , \int_0^\infty x^n e^{-\alpha x} dx = \frac{n!}{a^{n+1}}]$
(a) 1.5a ₀	
(b) 3a ₀	
(c) 2.5a ₀	
100000-00-00-00-00-00-00-00-00-00-00-00-	
(d) 4a ₀	
Key: A	
Itemcode : CP1	030
particle	of the following option gives correct expectation values of both x and p^2 (<x> and <p^2>) for e in a one-dimensional box of length L? [n is the quantum number, $^2bx dx = \frac{x^2}{4} - \frac{x}{4b} \sin(2bx) - \frac{1}{8b^2} \cos(2bx)$]</x>
,	$4 \ 4b \ 8b^2$
(a) <x>=⊥,<</x>	$p^2 > = \frac{n^2 h^2}{n^2}$
(b) $\ll = \frac{L}{4}, \ll$	
(c) $<_{x}> = \frac{L}{2}, <_{p}$	
$(c) \& 2^{n}, p \\ (c) \& (c) ($	
(u) 2	
Itemcode : CP1 Q56 : The properties of the prope	031 obability that an electron described by a H-atom 1s wave function will be found within one bohr is [Given $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^s}} e^{-r/a_0}$ and $\int x^2 e^{bs} dx = e^{bs} \left(\frac{x^2}{b} - \frac{2x}{b^2} + \frac{2}{b^3} \right)$]
(a) 0.473	and the second sec
10040500000	
V 11 3/3	
(c) 0.213	
 (b) 0.323 (c) 0.213 (d) 0.723 Key: B 	

Itemcode : CP1032 Q57 :

We have three operators (i) $(1-x^2) d^2/dx^2 - x d/dx$ (ii) $x d^2/dx^2 + (1-x) d/dx$ (iii) $d^2/dx^2 - 2x d/dx$ and three Eigen functions (a) $4x^3-3x$ (b) $4x^4-12x^2+3$ (c) x^2-4x+2 Choose the correct combination of operators and their corresponding Eigen functions from the given options: (a) (i)-(b), (ii)-(c), (iii)-(a) (b) (i)-(c), (ii)-(a), (iii)-(b) (c) (i)-(c), (ii)-(b), (iii)-(a) (d) (i)-(a), (ii)-(c), (iii)-(b) Key: D Itemcode : CP1033 Q58 : The energy level $\frac{17\hbar^2}{8mL^2}$ for a particle in a cubic box (of edge length L) has degeneracy (a) 4-fold (b) 3-fold (c) 2-fold (d) Non-degenerate Key: **B** Itemcode : CP1034 Q59 : The decomposition of ozone in the reaction $2O_3(g) \rightarrow 3O_2(g)$ follows the mechanism $O_3 \Leftrightarrow O_2 + O = k_1, k_1$ (i) $O+O_3 \rightarrow O_2+O_2$ k_2 (ii) Choose the correct option $\frac{d[O_8]}{dt} = \frac{-2k_1 \kappa_{21} v_{32}}{k_1' [O_2] + k_2 [O_8]^2}$ (a) $\frac{d[O_3]}{dt} = \frac{-2\kappa_1\kappa_2}{k_1'[O_2] + k_2[O_3]}$ (b) $\frac{d[O_3]}{dt} = \frac{-2k_1 k_2 [O_3]^2}{k_1'[O_2] + k_2[O_3]}$ (c) (d) $\frac{d[O_8]}{dt} = \frac{2k_1 k_2 [O_8]^2}{k_1' [O_2]^2 + k_2 [O_8]^2}$ Key: C Itemcode : CP1035 Q60: Considering the following mechanism, the rate law for the decomposition $2N_2O_5(g) \rightarrow 4NO_2(g)+O_2(g)$ 15 $N_2O_5 \Leftrightarrow NO_2 + NO_3$ (i) k_1, k_1 $\begin{array}{c} \text{NO}_2 + \text{NO}_3 \rightarrow \text{NO}_2 + \text{O}_2 + \text{NO} & k_2 \\ \text{NO} + \text{NO}_3 \rightarrow \text{NO}_2 + \text{NO}_2 & k_3 \end{array}$ (11) (iii) (a) $Rate = \frac{k_1 k_2}{k_1' + 2k_2} [N_2 O_5]^2$ (b) $Rate = \frac{k_1 k_2}{k_1' + 2k_2} [N_2 O_5]$ (c) $Rate = \frac{k_1 k_2}{k_1'} [N_2 O_5]$ (d) Rate = $\frac{k_1 k_2}{k'_1} [N_2 O_5]^2$ Key: B Itemcode : CP1036 061: In a photochemical reaction A \rightarrow 2B+C the quantum efficiency with 500 nm light is 2.1 × 10² mol einstein⁻¹. After exposure of 300 mmol of A to the light, 2.28 mmol of B is formed. Number of photons absorbed by A are (given: 1 einstein = 1mol photon, Avogadro No. 6.023 × 1023) (a) 4.3×10^{25} (b) 3.3×10^{18} (c) 5.3×10^{22} (d) 4.3×10^{12} Key: B Itemcode : CP1037 Q62: The photochemical chlorination of chloroform in gas follows the mechanism $Cl_2+hv \rightarrow 2Cl$ (i) Ia $Cl+CHCl_3 → CCl_3+HCl$ k_2 (ii) $CCl_3+Cl_2 \rightarrow CCl_4+Cl$ k3 (111) $2CCl_3+Cl_2 \rightarrow 2CCl_4$ k4 (iv) Choose the correct option from related to this mechanism

:. GCBT Online .:

(a)
$$\frac{d[CCl_4]}{dt} = 2I_a + \frac{k_3 I_a^{1/2} [Cl_2]^{1/2}}{k_4^{1/2}}$$
(b)
$$\frac{d[CCl_4]}{dt} = 2I_a + \frac{k_3 I_a^{1/2} [Cl_2]}{k_4^{1/2}}$$
(c)
$$\frac{d[CCl_4]}{dt} = 2I_a + \frac{k_3 I_a^{1/2} [Cl_2]^2}{k_4^{1/2}}$$
(d)
$$\frac{d[CCl_4]}{dt} = 2I_a + \frac{k_3 I_a [Cl_2]^{1/2}}{k_4^{1/2}}$$
Key: **A**

Itemcode : CP1038

Q63 : The resonance frequency of a photon in a magnetic field of 14.1 T [given g factor 5.5857, nuclear magneton 5.0508 × 10 ⁻²⁷ J T ⁻¹ , Plancks constant (<i>h</i>)= 6.629 × 10 ⁻³⁴ J s]		
(a) 400 MHz	42729 18	
(b) 600 MHz		
(c) 200 MHz		
(d) 500 MHz		
Key: B		
Itemcode : CP10)39	
Q64 : ¹⁴ N has 5.0508 3	s g factor 0.404. Energies of the nuclear spin states in a field of 11.50 T is (nuclear magneton \times $10^{-27}JT^{-1})$	
(a) -2.35 ×10 ⁻²⁶ .	J, 0, +2.35 ×10 ⁻²⁶ J	
(b) −1.172 ×10 ⁻⁴	²⁶ J ₂ +1.172 ×10 ⁻²⁶ J	
(c) _4.7 ×10 ⁻²⁶ J,	-2.35 ×10 ⁻²⁶ J, 0, +2.35 ×10 ⁻²⁶ J, +4.7 ×10 ⁻²⁶ J	

(d) 0 Key: **A**

Itemcode : CP1040

Q65: There are two equivalent protons in a radical which shows a three line spectrum (intensity distribution 1:2:1). The lines are at 330.2 mT, 332.5 mT and 334.8 mT. Which among the following statements give the correct combination of the hyperfine coupling constant and g-value of the radical (use the centre line) [Given: The spectrophotometer is operating at 9.319 GHz, Bohr Magneton= 9.27402×10⁻²⁴ J T⁻¹, Planck's constant (h)= 6.62608 × 10⁻³⁴ J Hz⁻¹]

(a) hyperfine coupling constant 3.4 mT and g-value 2.0025

(b) hyperfine coupling constant 3.4 mT and g-value 1.4050

(c) hyperfine coupling constant 2.3 mT and g-value 1.4050

(d) hyperfine coupling constant 2.3 mT and g-value 2.0025

Key: **D**

Itemcode : CP1041

Q66: The benzene radical anion has g-factor 2.0025. The field at which resonance will happen with spectrophotometer of 33.67 GHz [Given: Bohr Magneton= 9.27402 ×10⁻²⁴ J T⁻¹, Plancks constant (*h*)= 6.62608 × 10⁻³⁴ J Hz⁻¹]

(a)	2.302 T
-----	---------

(b) 1.201 T

(c) 1.920 T

(d) 1.803 T

Key: **B**

Itemcode : CP1042

Q67: Which of the following options give the correct combination of angular momentum (L) and magnetic moment (μ) values for a proton? [Given: (given g factor 5.585, nuclear magneton 5.047 × 10⁻²⁷ JT⁻¹, Plancks constant (h)= 6.626 × 10⁻³⁴ Js]

(a) L= 5.9137×10^{-34} Js, $\mu = 2.441 \times 10^{-26}$ JT⁻¹ (b) L= 0.9137×10^{-34} Js, $\mu = 2.441 \times 10^{-26}$ JT⁻¹ (c) L= 0.9137×10^{-34} Js, $\mu = 0.441 \times 10^{-26}$ JT⁻¹

(d) L= 5.9137×10^{-34} Js, $\mu = 0.441 \times 10^{-26}$ JT⁻¹ Key: **B**

Itemcode : CP1043

:. GCBT Online .:

Q68: The frequency at which the chemical shift of chloroform, $\delta = 7.28$ ppm occur relative to TMS on a on a 300 MHz spectrometer is

(a) 2184 Hz
(b) 1500 Hz
(c) 3200 Hz
(d) 2500 Hz
Key: A

Itemcode : CP1044

Q69 : The mobility of chloride ion is $7.91 \times 10^{-8} \text{ m}^2 \text{s}^{-1} \text{V}^{-1}$ in aqueous solution at 25° C. The molar ionic conductivity is (Given 1 Faraday = 96485 C mol⁻¹)

(a) $1.21 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ (b) $7.63 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$ (c) $8.53 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ (d) $15.26 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$ Key: **B**

Itemcode : CP1045 Q70 :

The limiting molar conductivities of KCl, KNO₃ and AgNO₃ are 14.99 mS m² mol⁻¹, 14.50 mS m² mol⁻¹ and 13.34 mS m² mol⁻¹, respectively (at 25^oC). The limiting molar conductivity of AgCl at 25^oC is

- (a) 12.85 mS m² mol⁻¹
- (b) $13.83 \text{ mS m}^2 \text{ mol}^{-1}$
- (c) $16.15 \text{ mS m}^2 \text{ mol}^{-1}$ (d) $42.83 \text{ mS m}^2 \text{ mol}^{-1}$
- Key: **B**

Itemcode : CP1046 071 :

The uncertainty (in m) with which the position of a baseball (0.145 kg) traveling at 45.0 m/s be measured when the uncertainty of its speed is 0.10% is

- (a) 5.1×10^{-38} m
- (b) 7.8×10^{-45} m
- (c) 9.2×10^{-25} m

```
(d) 8.1 \times 10^{-33} m
```

Key: D

Itemcode : CP1047

Q72: The vibrational wave number of oxygen molecule in the ground electronic state is 1580 cm⁻¹ and that in its first electronic excited state (to which an allowed electronic transition happens) is 700 cm⁻¹. The wave number of the lowest energy transition originating from the v=0 vibrational state of the ground electronic state to the excited state (\tilde{v}_{00}) is [Given: the separation between the minima of the potential energy curves of these electronic states is

6.175 eV, ignore any rotational structure or anharmonicity, 1 eV=8065.5 cm⁻¹]

(a) 49364 cm^{-1}

(b) 52354 cm^{-1}

(c) 32345 cm^{-1}

(d) 24567 cm^{-1}

Key: A

Itemcode : CP1048 Q73 :

:. GCBT Online .:

Consider the electronic transition (Schumann-Runge bands) between the ground state of O_2 and the excited state designated as *B* state. The ground state O_2 dissociates into two ground-state O atoms. On the other hand, the O_2 *B* state dissociates into one ground-state O atom and an O atom in an excited state 1.970 eV above the O ground state. The v'=0 to v''=0 band of the Schumann-Runge bands is at 202.60 nm and the bands converge to a continuous absorption beginning at 175.05 nm. The D_0 value of the O_2 ground state is [Given: 1 eV=8065.5 cm⁻¹]

(a) 4.35 eV

(b) 6.02 eV

(c) 5.11 eV

(d) 4.88 eV

Key: **C**

Itemcode : CP1049

Q74 The spectral line corresponding to the transition J=3 to J=4 in the rotational spectrum of HCl appears at 83 cm⁻¹. If the centrifugal distortion constant (*D*) of the molecule is 5.32×10^{-4} cm⁻¹ then the wave number then the wave number of the above transition is

(a) 83.46 cm^{-1}

- (b) 82.86 cm⁻¹
- (c) 81.52 cm^{-1}

(d) 80.56 cm^{-1}

Key: **B**

Itemcode : CP1050

Q75: The molecule HCl gives a strong IR absorption band at 2991 cm⁻¹. If deuterium is substituted for hydrogen in this molecule then the frequency of absorption will be [Consider that the force constant remains unaffected due to this substitution, $m_{H}=1.008$, $m_{Cl}=34.969$, $m_{D}=2.014$, 1 amu=1.661×10⁻²⁷kg]

(a) 1420.6 cm^{-1}

- (b) 3550.5 cm^{-1}
- (c) 7170.2 cm^{-1}
- (d) 2144.5 cm^{-1}

Key: D

© Government of Goa All rights reserved