Computer Based Examination System

2	Question Description	If $\widehat{H}=\frac{p^{2}}{2 m}+V(x)$, then $\left[\mathrm{x}^{2},\left[\mathrm{x}^{2}, \mathrm{H}\right]\right]$ simplifies to
	A	$\frac{-3 \hbar^{2} x^{2}}{2 m}$
	B	$\frac{-2 \hbar^{2} x^{2}}{m}$
	C	$\frac{-4 \hbar^{2} x^{2}}{m}$
	D	$\frac{5 \hbar^{2} x^{2}}{2 m}$
	Correct Answer	C
	Marks	1
3	Question Description	Which one of the following is an incorrect Boolean expression?
	A	$P Q+P Q=Q$
	B	$(P+\bar{Q})(P+Q)=P$
	C	$P(P+Q)=Q$
	D	$\bar{Q} \bar{R}+\bar{P} \bar{Q} R+P \bar{Q} R+P \bar{Q} R=\bar{Q}$
	Correct Answer	C
	Marks	1

The solution of the differential equation
$\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=10 \cos x$
is

A	$y=C_{1} e^{-x}+C_{2} e^{2 x}-\sin x-3 \cos x$
B	$y=C_{1} e^{x}+C_{2} e^{-2 x}-\sin x-3 \cos x$
C	$y=C_{1} e^{-x}+C_{2} e^{2 x}-3 x-3 \cos x$
D	$y=C_{1} e^{x}+C_{2} e^{2 x}-3 \cos x$
Correct Answer	A
Marks	1

| Question Description | A spin $1 / 2$ particle is in the state $S_{z}=\hbar / 2$. The expectation values of $S_{x}, S_{x}^{2}, S_{y}, S_{x}^{2}$ are |
| :--- | :--- | :--- |
| A | $0, \frac{\hbar^{2}}{4}, \frac{\hbar^{2}}{4}$ |
| B | $\frac{\hbar^{2}}{4}, 0, \frac{\hbar^{2}}{4}, 0$ |
| C | $0, \frac{\hbar^{2}}{4}, 0, \frac{\hbar^{2}}{4}$ |
| D | $\frac{\hbar^{2}}{4}, \frac{\hbar^{2}}{4}, 0,0$ |
| Correct Answer | C |
| Marks | 1 |
| Question Description | If the Lagrangian of a system does not depend on time explicitly, then |
| A | The Lagrangian is conserved |
| B | The total momentum is conserved |
| C | The Hamiltonian is conserved |
| Marks | The total angular momentum is conserved |

7	Question Description	An inertial observer A at rest measures the electric and magnetic field $\vec{E}=(\alpha, 0,0)$ and $\vec{B}=(\alpha, 0,2 \alpha)$ in a region, where a is a constant. Another inertial observer B, moving with a constant velocity with respect to A, measures the fields as $\vec{E}^{\prime}=\left(E_{x}{ }_{x}, \alpha, 0\right)$ and $\vec{B}^{\prime}=\left(\alpha, B_{y}^{\prime}, \alpha\right)$. Then, in the units of $\mathrm{c}=1, E^{\prime}{ }_{x}$ and $B^{\prime}{ }_{y}$ are respectively given by
	A	-2α and α
	B	2α and $-\alpha$
	C	α and -2α
	D	- α and 2α
	Correct Answer	D
	Marks	1
8	Question Description	Given :
		$\sum_{n=0}^{\infty} P_{n}(x) t^{n}=\left(1-2 x t+t^{2}\right)^{\frac{-1}{2}},$ For $\|\mathrm{t}\|<1$, the value of $P_{5}(-1)$ is
	A	-1
	B	-0.5
	C	1
	D	0.25
	Correct Answer	A
	Marks	1

9 Question Description

A

B

C

D

Correct Answer

Marks

Question Description

A

B

C

D

Correct Answer

Marks

A gas of molecules each having mass m is in thermal equilibrium at a temperature. Let, v_{x}, v_{y}, v_{z} be the Cartesian components of velocity of a molecule. The mean value of $\left(v_{x}-\alpha v_{y}+\beta v_{z}\right)^{2}$ is

$$
\left(1+\alpha^{2}-\beta^{2}\right) \frac{k_{B} T}{m}
$$

$$
\left(1+\alpha^{2}+\beta^{2}\right) \frac{k_{B} T}{m}
$$

$$
\left(\beta^{2}-\alpha^{2}\right) \frac{k_{B} T}{m}
$$

$$
\left(\alpha^{2}+\beta^{2}\right) \frac{k_{B} T}{m}
$$

Relaxation time increases

Number density of current carriers increases relaxation time decreases but effect of decrease in relaxation time is much less than increase in number density.

Number density of charges carriers decreases

Both number density of charge carriers and relaxation time increase.

Marks
B

1

Question Description	A particle values of
A	$2(T\rangle=n\langle V\rangle$
B	$\langle T\rangle=n\langle V\rangle$
C	$\|T\rangle=\langle V\rangle$
D	$\|T\rangle=2 n\langle V\rangle$
Correct Answer	A
Marks	1

13	Question Description	The scattering amplitude is quantum mechanics has di
	A	Length
	B	Area
	C	$(\text { Length })^{\frac{1}{2}}$
	D	Dimensionless
	Correct Answer	D
	Marks	1
14	Question Description	The value of the integral $\int_{-\infty}^{\infty} \cos x \cdot \delta\left(x^{2}-\pi^{2}\right) d x$ is
	A	0
	B	π
	C	$-\frac{1}{\pi}$
	D	-1
	Correct Answer	C
	Marks	1

Consider a particle of electric charge 'e' and mass 'm' moving under the influence of a constant horizontal electric field 'E' and constant vertical gravitational field described by acceleration due to gravity ' g '. If the particle starts from rest, what will be its trajectory?
straight line
parabolic
circular
elliptic

Correct Answer

Marks
1

Question Description	Let, (p, q) and (P, Q) be two pairs of canonical variables. The transformation $Q=\sqrt{2 q} e^{-1+2 a} \cos p, P=\sqrt{2 q} e^{-a-1} \sin p$ is canonical for (a is a constant)
A	0
B	1
C	2
D	3
Correct Answer	C
Marks	1

Question Description

A

B

D

Correct Answer
Marks

Consider a $(n \times n)$ matrix A, in which $A i j$ is the product of the indices i and j. The matrix A
has one degenerate eigenvalue with degeneracy ($n-1$)
has two degenerate eigenvalues with degeneracies 2 and ($n-2$)
has one degenerate eigenvalues with degeneracy n
does not have any degenerate eigenvalues

A
1
A
B

$$
\frac{1}{\exp \left(\frac{\epsilon-\mu}{k_{B} T}\right)+1}
$$

$\frac{1}{\exp \left(\frac{\epsilon-\mu}{k_{B} T}\right)-1}$

$$
\frac{1}{\exp \left(\frac{\mu-\epsilon}{k_{B} T}\right)+1}
$$

Correct Answer

$$
\frac{1}{\exp \left(\frac{\mu-\epsilon}{k_{B} T}\right)-1}
$$

Marks 1

19	Question Description	Let E and \vec{P} be the energy and momentum of a relativistic particle with rest mass m, then
	A	$E^{2}=p^{2} c^{2}+m^{2} c^{4}$
	B	$E^{2}=p^{2} c^{2}-m^{2} c^{4}$
	C	$E^{2}=p^{2} c^{4}+m^{2} c^{2}$
	D	$E^{2}=\frac{1}{2} p^{2} c^{2}+m^{2} c^{4}$
	Correct Answer	A
	Marks	1
20	Question Description	For a given probability distribution function $\begin{aligned} & f(x)=\lambda e^{-\lambda x}, x \geq 0 \\ & =0, \mathrm{x}<0 \end{aligned}$ where $\lambda>0$ is known as rate parameter, the variance is
	A	0
	B	λ
	C	$\frac{1}{\lambda}$
	D	$\frac{1}{\lambda^{2}}$
	Correct Answer	D
	Marks	1

21	Question Description	If the peak output voltage of a full wave rectifier is 10 V , its DC voltage is
	A	3.18 V
	B	6.36 V
	C	7.07V
	D	10.0 V
	Correct Answer	B
	Marks	1
22	Question Description	The inverse of the matrix $M=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
	A	M-I
	B	$M^{2}-I$
	C	$1-M^{2}$
	D	$1-M$
	Correct Answer	B
	Marks	1 -

Question Description	After b right			
A	$40 \mathrm{~m} / \mathrm{s}$	$	$	B
:---				
C				
D				
Correct Answer				
Marks				

24 Question Description

A

B

C

D

Correct Answer	D
Marks	1

4

6

10

16

1

The number of independent components of four dimensional second rank symmetric tensor is

Question Description

A

Correct Answer

Marks
\hat{A} and \hat{B} represent two physical characteristics of a quantum system. If \hat{A} is Hermitian, then for the product $\hat{A} \hat{B}$ to be Hermitian, it is sufficient that
\hat{B} is anti-Hermition
\hat{B} is Hermition
\hat{B} is Hermition and; \widehat{A} and \hat{B} commute
\hat{B} is Hermition and; \hat{A} and \hat{B} anti-commute

26 Question Description

> The value of integral
> $I=\int_{0}^{2 \pi} \frac{d \theta}{(5+4 \cos \theta)^{2}}$ is
> $\frac{10 \pi}{49}$

B

D

Correct Answer	B
Marks	1

27 Question Description

A

B $\frac{6 \pi^{2} \hbar^{2}}{m a^{2}}$
C

D

Correct Answer B

Marks

28 Question Description

A

B

C

D

Correct Answer

Marks
$\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$
$\frac{12 \pi^{2} \hbar^{2}}{m a^{2}}$
$\frac{4 \pi^{2} \hbar^{2}}{m a^{2}}$

1
di-atomic
tri-atomic
hexa-atomic

A
1

An electron is confined in a cubical box of size a. The energy of the fourth excited energy state of the system is

For which gas, the ratio of specific heats $\frac{C_{p}}{C_{v}}$ will be the largest?
mono-atomic

29	Question Description	Energy Eigen values of a particle of mass m, confined inside a one dimensional box of length L is given by
	A	$\frac{\hbar^{2} \pi^{2} n}{2 m L^{2}}$
	B	$\frac{\hbar^{2} \pi^{2} L^{2}}{2 m n^{2}}$
	C	$\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}$
	D	$\frac{\hbar^{2} \pi^{2}}{2 m n^{2} L^{2}}$
	Correct Answer	C
	Marks	1
30	Question Description	For the function $f(z)=\frac{z-\sin z}{z^{3}}$, the point $z=0$ is
	A	a pole of order 2
	B	a pole of order 3
	C	an essential singularity
	D	a removable singularity
	Correct Answer	D
	Marks	1

31	Question Description	If the total charge of a system is zero, then its dipole moment is
	A	zero
	B	independent of the choice of origin
	C	dependent on the choice of origin
	D	none of these
	Correct Answer	B
	Marks	1
32	Question Description	The vector $r^{n+1} \vec{r}$ will be solenoidal for ($\vec{r} \neq 0$)
	A	$n=3$
	B	$n=-3$
	C	$n=-4$
	D	$n=2$
	Correct Answer	C
	Marks	1

A

B

D

Correct Answer	B
Marks	1

Marks

34

Zero

Positive

Negative
Proportional to $\ln \left[\frac{K_{B} T}{E_{0}}\right]$ where E_{0} is internal energy

B

1

Question Description

A

B

C

D

Correct Answer
 Marks

An antenna uses e.m waves of frequency 3 MHz . For proper working the size of antenna should be

250m

3 km

25m

15 km

$$
\vec{E}=E_{0} \cos (k y-w t) \hat{x}, \vec{B}=\frac{E_{0}}{c} \cos (k y-w t) \hat{z}
$$

$$
\vec{E}=E_{0} \cos (k x-w t) \hat{y}, \vec{B}=\frac{E_{0}}{c} \cos (k x-w t) \hat{z}
$$

$$
\vec{E}=E_{0} \cos (k x-w t) \hat{z}, \vec{B}=\frac{E_{0}}{c} \cos (k x-w t) \hat{y}
$$

Correct Answer

Marks
An electromagnetic wave of frequency ω travels in the x-direction through vacuum. It is polarized in the y-direction and the amplitude of the electric field is E_{0}. With $k=\frac{\omega}{c}$, where c is the speed of the light in vacuum, the electric and the magnetic fields are then conventionally given by

$$
\vec{E}=E_{0} \cos (k x-w t) \hat{x}, \vec{B}=\frac{E_{0}}{c} \cos (k y-w t) \hat{y}
$$

Question Description

Correct Answer

Given the matrix $A=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ what is the value of $\operatorname{Det}\left(e^{A}\right)$?

Marks
e
$e^{\frac{1}{3}}$
e^{2}
e^{3}
A
1

37 Question Description

A

B

C

D

Correct Answer
Marks

38 Question Description

A

B

C

D

Correct Answer
Marks

After the detonation of an atom bomb, the spherical ball of gas was found to be of 15 meter radius at a temperature of $3 \times 10^{5} \mathrm{~K}$ Given the adiabatic expansion coefficient $\gamma=\frac{5}{3}$, what will be the radius of the ball when its temperature reduces to $3 \times 10^{3} \mathrm{~K}$?

50 m

150 m

100 m

1

The homogeneity of time leads to the law of conservation of
linear momentum
angular momentum
energy
parity

C
1

39	Question Description	Which of the following quantity refers to Gibb's free energy?
	A	$U-T S+p V$
	B	$U+P V$
	C	$U-T S$
	D	U
	Correct Answer	A
	Marks	1
40	Question Description	The state of polarization of light with the electric field vector $\vec{E}=E_{0} \cos (k z-w t) \hat{x}-E_{0} \cos (k z-w t) \hat{y}$
	A	circularly polarized
	B	elliptically polarized with the major axis along x -axis
	C	linearly polarized along z-direction
	D	linearly polarized at -45° to x -axis
	Correct Answer	D
	Marks	1

41	Question Description	A body mass m moves in a circular orbit of radious R in a potential $V_{(r)}=\frac{-K}{r}$, where K is a constant, then its orbital angular momentum about the centre of circle is
	A	2 RKm
	B	$\sqrt{2 \mathrm{RKm}}$
	C	$\sqrt{\text { RKm }}$
	D	RKM
	Correct Answer	C
	Marks	1
42	Question Description	In a system comprising of approximately 10^{23} distinguishable particles, each particle may occupy any of 20 distinct states. The maximum value of the entropy per particle is nearest to
	A	$3 k_{B}$
	B	$20 k_{B}$
	C	$10(\ln 2) k_{B}$
	D	$20(\ln 2) k_{B}$
	Correct Answer	A
	Marks	1

	$\ln P=$
	and
	$\ln P=$
A	For
B	185
C	190
D	195
Correct Answer Marks	200

44 Question Description

A

B

C

D

In the laboratory frame, a particle P of rest mass m_{0} is moving in the x-direction with a speed of $\frac{5}{19} c$. It approaches an identical particle Q moving in negative direction with a speed of $\frac{2}{5} c$. The energy of the particle P in the rest frame of the particle Q is

$$
\frac{1}{2} m_{0} c^{2}
$$

$$
\frac{5}{4} m_{0} c^{2}
$$

$$
\frac{19}{13} m_{0} c^{2}
$$

Correct Answer
Marks

45

Question Description

A
B
$\frac{11}{9} m_{0} c^{2}$

Correct Answer B

Question Description	A hydrogen atom is in $2 p$ state. What is the most probable distance separating the electron and the proton, in terms of Bohr radius, A
B a_{0} C $1.5 a_{0}$ D $3 a_{0}$ Correct Answer $4 a_{0}$ Marks D	1

46 Question Description

A

B

C
D

Correct Answer
Marks

47 Question Description

A

B
C

D

Correct Answer

Marks

With $z=x+i y$, which of the following functions $f(x, y)$ is not a complex analytic function of z ?
$(x+i y-8)^{3}\left(4+x^{2}-y^{2}+2 i x y\right)^{7}$
$(1-x+i y)^{3}(2+x+i y)^{4}$
$(x+i y)^{3}(1-x-i y)^{2}$
$\left(x^{2}-y^{2}+2 i x y-8\right)^{5}$
B
1

A system has unperturbed Hamiltonian, in energy units given by
The unperturbed energy Eigen values of system are
$\left[\begin{array}{cccc}15 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$
$(15,3,3,3)$
$(-3,-15,-3,-3)$
$(6,3,15,9)$
$(-3,-3,-15,-12)$

A

1

Question Description	The minimum number of NAND gates required to construct an OR gate is:	
A	2	
C	4	
D	3	
Correct Answer	D	
Marks	1	
Question Description	The net charge of an p-type semiconductor is	
A	zero	
B	negative	
C	positive	
Marks	dependent	

| 50 Question Description | The Eigen values of the matrix $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$ are |
| :--- | :--- | :--- |
| A | 0 |
| B | 0 and 1 |
| C | -1 and 0 |
| D | 1 and -1 |
| Correct Answer
 Marks | D |

51 Comprehension	Shakespeare did not rely on the stage-carpenter or the scenic painter. He puts his scenery in his lines. There you will find mountains and river and seas, valleys and cliffs, violets and clouds, and over all "the firmament fretted with golden fire." He cared little for plot, little for surprise. He did not rely on stage effects or red fire. The plays grow before your eyes and they grow as the morning comes. Plot surprises but once. There must be something in the play besides surprise. The plot in an author is a kind of strategy - that is to say, a sort of cunning-and cunning does not belong to the highest natures. There is in Shakespeare such a wealth of thought that the plot becomes almost immaterial; and such is this wealth that you can hardly know the play-there is too much. After you have heard it again and again. It seems as pathless as an untrodden forest.
Question Description	As per the implicit meaning of the above passage, Shakespeare
A	did not trust hisstage-carpenter
B	disapproved of the scenic painter
C	preferred to have very little stage design
Correct Answer	complemented stage design with verbal expression
Marks	1

Comprehension	Shakespeare did not rely on the stage-carpenter or the scenic painter. He puts his scenery in his lines. There you will find mountains and river and seas, valleys and cliffs, violets and clouds, and over all "the firmament fretted with golden fire." He cared little for plot, little for surprise. He did not rely on stage effects or red fire. The plays grow before your eyes and they grow as the morning comes. Plot surprises but once. There must be something in the play besides surprise. The plot in an author is a kind of strategy - that is to say, a sort of cunning-and cunning does not belong to the highest natures. There is in Shakespeare such a wealth of thought that the plot becomes almost immaterial; and such is this wealth that you can hardly know the play-there is too much. After you have heard it again and again. It seems as pathless as an untrodden forest.
Question Description	The passage shows that Shakespeare
A	wrote plays where the plot is immaterial
B	avoids an element of surprise in his plot
C	wrote complex, dense and intriguing plays
D	confuses the reader as the play moves on
Correct Answer	C
Marks	1

Comprehension	Shakespeare did not rely on the stage-carpenter or the scenic painter. He puts his scenery in his lines. There you will find mountains and river and seas, valleys and cliffs, violets and clouds, and over all "the firmament fretted with golden fire." He cared little for plot, little for surprise. He did not rely on stage effects or red fire. The plays grow before your eyes and they grow as the morning comes. Plot surprises but once. There must be something in the play besides surprise. The plot in an author is a kind of strategy - that is to say, a sort of cunning-and cunning does not belong to the highest natures. There is in Shakespeare such a wealth of thought that the plot becomes almost immaterial; and such is this wealth that you can hardly know the play-there is too much. After you have heard it again and again. It seems as pathless as an untrodden forest.
Question Description	Identify the most obvious figure of speech in the statement, "the firmament fretted with golden fire."
A	alliteration; metaphor; hyperbole
B	transferred epithet; simile; personification
C	hyperbole; personification; simile
D	simile; alliteration; hyperbole
Correct Answer	A
Marks	1

Comprehension	Shakespeare did not rely on the stage-carpenter or the scenic painter. He puts his scenery in his lines. There you will find mountains and river and seas, valleys and cliffs, violets and clouds, and over all "the firmament fretted with golden fire." He cared little for plot, little for surprise. He did not rely on stage effects or red fire. The plays grow before your eyes and they grow as the morning comes. Plot surprises but once. There must be something in the play besides surprise. The plot in an author is a kind of strategy - that is to say, a sort of cunning-and cunning does not belong to the highest natures. There is in Shakespeare such a wealth of thought that the plot becomes almost immaterial; and such is this wealth that you can hardly know the play-there is too much. After you have heard it again and again. It seems as pathless as an untrodden forest.
Question Description	The statement, "It seems as pathless as an untrodden forest," refers to
A	the dramatic talent of Shakespeare
B	the Shakespearean drama as a whole
C	the value of strategy in writing a play
D	the wealth of thought in Shakespeare's plays
Correct Answer	D
Marks	1

Comprehension	Shakespeare did not rely on the stage-carpenter or the scenic painter. He puts his scenery in his lines. There you will find mountains and river and seas, valleys and cliffs, violets and clouds, and over all "the firmament fretted with golden fire." He cared little for plot, little for surprise. He did not rely on stage effects or red fire. The plays grow before your eyes and they grow as the morning comes. Plot surprises but once. There must be something in the play besides surprise. The plot in an author is a kind of strategy - that is to say, a sort of cunning-and cunning does not belong to the highest natures. There is in Shakespeare such a wealth of thought that the plot becomes almost immaterial; and such is this wealth that you can hardly know the play-there is too much. After you have heard it again and again. It seems as pathless as an untrodden forest.
Question Description	"The plot in an author is a kind of strategy- that is to say, a sort of cunning-and cunning does not belong to the highest natures."
A Shakespeare is hardly using any plot strategy or cunning in his plays	

56 Question Description

A

B
C
D

Correct Answer B
Marks

Correct Answer A
Marks
1

57 Question Description
A
B

C
D
'Mission Vatsalya' for women who lost their husbands due to COVID-19 has been launched in which state?
Madhya Pradesh

Maharashtra

Gujarat

Haryana

Zair-AI-Bahr is a naval exercise between India and which country?

Qatar

Oman

UAE

USA

1

Question Description	India's highest altitude herbal park has been recently inaugurated in which state?
A	Uttarakhand
B	Uttar Pradesh
C	Haryana
D	Bihar
Correct Answer	A
Marks	1

59 Question Description

A

B

C

D

Correct Answer
Marks

Ohmium International has launched India's first green hydrogen electrolyzer giga factory at which city?

Kolkata

Bengaluru

Haridwar

Guwahati

B
1

| Auestion Description | The International Dog Day is celebrated on which date? |
| :--- | :--- | :--- |
| A | August 12 |
| C | August 26 |
| D | August 27 |
| Correct Answer | Bugust 31 |
| Marks | 1 |
| Question Description | What is the name of the chatbot developed by Bharat Petroleum Corporation Ltd? |
| A | Sugar |
| B | Uria |
| C | Vijay |
| D | Bathi |
| Correct Answer | 1 |

Question Description

World Senior Citizen Day is found globally on which date?

A

B

C

D

Correct Answer
Marks

August 21

August 23

August 28

August 24

A

1

Question Description	H
A	Ro
B	His
C	Ch
D	Ne
Correct Answer	B
Marks	1

Haryana Chief Minister Manohar Lal Khattar has announced to rename which airport as Maharaja Agrasen International Airport?

Rohtak Airport

Hisar Airport

Chandigarh Airport

New Delhi Airport

B

Marks
1

64 Question Description

A

B

C
D

Correct Answer

Marks

Correct Answer

Marks

5 Question Description

A
B

C

D

The State Bank of India (SBI) recently inaugurated an ATM on a Houseboat in which city?
Shillong
Guwahati

Srinagar

Kohima

C

1

The government of India has allowed Women to sit in which exam recently for the first time in India?
UPSC CSE

AFCAT

NDA

CDS

C
1

Question Description

Correct Answer Marks

There is clear evidence that the mandated use of safety belts has resulted in fewer fatalities over the past five years. Compared to the five-year period prior to the passage of laws requiring the use of safety seats, fatalities of this kind have decreased by 30 percent.
Which one of the following, if true, most substantially strengthens the argument above?

The number of serious automobile accidents involving use of safety belts has remained steady over the past five years.

Automobile accidents involving use of safety belts have decreased sharply over the past five years.
The use of air bags in automobiles has increased by 30 percent over the past five years.

Most fatal automobile accidents involving use of safety belts occur in the driveway of their home.

B

Correct Answer

Each of these questions contains six statements followed by four sets of combinations of three. Choose the set in which the statements are logically related.
A. Laxman is a man.
B. Meera is Laxman's wife.
C. Some women are islands.
D. No man is an island.
E. Meera is not an island.
F. Laxman is not a island.

ADE

ABE

ADF

CDE
Marks 1

Question Description

A

B

C

D

Correct Answer B
Marks
1

9 Question Description

A

B

C

D
Correct Answer D

Gopal went to a fruit market with certain amount of money. With this money he can buy either 50 oranges or 40 mangoes. He retains 10% of the money for taxi fare. If he buys 20 mangoes, then the number of oranges he can buy is

Efficiency of A is twice as that of B. If they work together, they can complete a job in 18 days. If A alone does the job, in how many days he will complete the job?

27 days

36 days

40 days

54 days

1

A	ADF
B	BCD
C	ABF
D	ABD
Correct Answer	A
Marks	1

Our school district should not spend its money on the new remedial English reading program. After all, our students get all the reading practice they need by studying history and science.
The argument above depends on which the following assumptions?

The remedial English reading program would not help the students learn history and science.

B

Correct Answer
Marks
Other reading programs are just as effective but less expensive than the remedial English reading program.

The remedial English reading program involves only reading practice.

Teaching students history and science is more important than teaching them reading skills.

A

72 Question Description

Correct Answer	B
Marks	1

