Computer Based Examination System

Exported On *			2022/06/27 11:40:24
Title *			Question Paper Answ
OES Exam *			GPSC09202115 / Ass
1	Question Description	The Arrhenius for the reactio $2 X Y(g) \rightarrow 2 X$	parameter and the activat at 400 K . Given $\mathrm{R}=8.3$ $g+Y_{2}(g)$
	A	$-9.99 \times 10^{9} \mathrm{~kJ}$	mol^{-1}
	B	$1 \times 10^{13} \mathrm{~kJ} \mathrm{mo}$	
	C	$97.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
	D	$100.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
	E	None of the ab	
	Correct Answer	C	
	Marks	1	

2	Question Description	The vapour pressure exerted by 0.50 M aqueous solution of first group halide is 100 kPa at $100^{\circ} \mathrm{C}$. What is the activity of water in this solution?
	A	0.0131
	B	0.9869
	C	1.0000
	D	1.0132
	E	None of the above
	Correct Answer	B
	Marks	1
3	Question Description	The temperature of a system of ideal gas is raised from 300 K to 600 K . If the collision rates at 300 K is given by R_{C}, what would be the approximate collision rate at 600 K .
	A	$2.25 R \mathrm{c}$
	B	$1.73 R \mathrm{c}$
	C	$1.4 R \mathrm{c}$
	D	$0.5 R_{\text {c }}$
	E	None of the above
	Correct Answer	C
	Marks	1

The following graph shows the theoretical variation of molar conductivities as a function of ionic strength for four different salts, viz. AgNO_{3}, $\mathrm{CuSO}_{4}, \mathrm{FeCl}_{3}, \mathrm{SrCl}_{2}$, Match the plot with the salt.

$\mathrm{I}-\mathrm{CuSO}_{4}, \mathrm{II}-\mathrm{FeCl}_{3}, \mathrm{III}-\mathrm{SrCl}_{2}, \mathrm{IV}-\mathrm{AgNO}_{3}$
$\mathrm{II}-\mathrm{CuSO}_{4},{\mathrm{IV}-\mathrm{FeCl}_{3}, \mathrm{III}^{2}-\mathrm{SrCl}_{2}, \mathrm{II}-\mathrm{AgNO}_{3}, ~}_{\text {I }}$

Correct Answer

$\mathrm{II}-\mathrm{CuSO}_{4}, \mathrm{III}_{-} \mathrm{FeCl}_{3}, \mathrm{IV}-\mathrm{SrCl}_{2}, \mathrm{I}-\mathrm{AgNO}_{3}$
$\mathrm{IV}-\mathrm{CuSO}_{4}, \mathrm{II}-\mathrm{FeCl}_{3}, \mathrm{III}-\mathrm{SrCl}_{2}, \mathrm{I}-\mathrm{AgNO}_{3}$

None of the above

Marks

A
Mark 1

Question Description	Creatine phosphotransferase plays a role in synthesising ATP (Adenosine triphosphate) in the muscle cells. A phosphate group is transferred from creatinephosphate (CrP) to ADP (adenosine diphosphate). The experimental observations indicate that the Michaelis-Menton mechanism is prevalent. The apparent reaction rates are $1.75 \mu \mathrm{M} \mathrm{min}^{-1}$ and $0.8 \mu \mathrm{M} \mathrm{min}^{-1}$ when the concentration of CrP is 1.8 mM and 0.75 mM , respectively. What is the maximum rate that is expected for this process?
A	$2.46 \mu \mathrm{M} \mathrm{min}^{-1}$
B	$2.46 \mathrm{mM} \mathrm{min}^{-1}$
C	$2.46 \mathrm{nM} \mathrm{min}^{-1}$
D	$2.46 \mathrm{M} \mathrm{min}^{-1}$
E	None of the above
Correct Answer	A
Marks	1

6 Question Description

A

E

Correct Answer
 A

Marks

1

In case of the benzene anion radical the hyperfine splitting constant (HSC) is observed to be 3.75 gauss. The observed HSC in naphthalene anion radicals is about 4.95 gauss and 1.80 gauss respectively for the alpha and beta protons. The value of electron density (corrected to 2 places of decimal) on each alpha and beta carbon of the napthyl anion radical are
0.22 on the alpha carbon and 0.08 on the beta carbon
0.08 on the alpha carbon and 0.22 on the beta carbon
0.76 on the alpha carbon and 0.49 on the beta carbon
0.76 on the alpha carbon and 0.24 on the beta carbon

None of the above

$$
n_{s}=N \exp \left(\frac{-\Delta H_{s}}{2 k_{B} T}\right)
$$

Where, n_{s} is the number of Schottky defects per m^{3} in a crystal with N cation and N anion sites per $m^{3}, \Delta H_{s}$ is the enthalpy required to form one defect, k_{B} is the Boltzmann constant, T is the temperature. Which of the following statements can be said to be true
I. The number of defects increases as Temperature increases
II. The proportion of defects decrease as the enthalpy of defect formation is decreased

Correct Answer

Marks
Both statements are correct

Both statements are incorrect

Statement I is correct and Statement II is incorrect

Statement I is incorrect and statement II is correct

None of the above

A
1

$$
E_{0}=\frac{h v}{2}
$$

$$
E_{0}>\frac{h v}{2}
$$

Correct Answer

$$
E_{0}<\frac{h v}{2}
$$

$$
E_{0}=h v
$$

None of the above
Marks 1

9 Question Description

A

B

C

D

E

Correct Answer

Marks

A transition metal chalcogen arranges itself in two types as shown below. In the figure, the larger circles represent anion, while smaller ones the cation. By visual inspection identify the structures as they are popularly known as

Type I- Zinc Blende, Type II- Wurzite

Type I- Zinc Blende, Type II- Rock Salt

Type I- Rock Salt, Type II- Wurzite

Type I- Wurzite, Type II- Zinc Blende

None of the above

D
1

A solid compound decomposes to give a new solid along with evolution of a gas.
$A(s) \rightarrow B(s)+C(g)$
Match the scematic plots of variation of fraction of solid decomposed vs time with the process involved

I-a, II-b, III-c, IV-d

I-b, II-c, III-d, IV-a

I-c, II-d, III-a, IV-b

I-d, II-a, III-b, IV-c

None of the above

| 11 Question Description | Ammonia has more than one defined moment of inertia. Following standard conventions, which of the following condition holds with regard to rotational
 constants, A, B and C ? |
| :--- | :--- | :--- |
| A | $\mathrm{A}=\mathrm{B}=\mathrm{C}$ |
| B | $\mathrm{A}=\mathrm{B}>\mathrm{C}$ |
| C | $\mathrm{A}>\mathrm{B}>\mathrm{C}$ |
| D | $\mathrm{A}<\mathrm{B}=\mathrm{C}$ |
| E | None of the above |
| Correct Answer | B |
| Marks | 1 |

Question Description	What is the total energy of pi electrons of butadienlyl monoanion, if the length of the ion is estimated to be 400 pm . Given the mass of electron is me $=9 \mathrm{x} 10^{-}$ 31 kg and $\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}$.
A	$3.05 \times 10^{-17} \mathrm{~J}$
B	$3.78 \times 10^{-18} \mathrm{~J}$
C	$7.18 \times 10^{-18} \mathrm{~J}$
D	$3.78 \times 10^{-20} \mathrm{~J}$
E	None of the above
Correct Answer	C
Marks	1

13 Question Description

A

B

C

D

E

Correct Answer

Marks

The mobility of Bromide ions is measured to be $8 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$. The experiment is carried out at 300 K , in a liquid whose viscosity is 0.9 CP (centipoise), what will be the solvodynamic radius (approximate) for the bromide ions in the solution. Given $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~F}=96500$ coulomb $\mathrm{mol}^{-1}, \mathrm{~N}_{\mathrm{a}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$

14 pm

118 pm

3 A

125 A

None of the above

B

1

$J_{12}^{W A}$	$2 v_{0} \delta_{12}$
$J_{12}^{X A}$	$v_{0} \delta_{12}$
$J_{12}^{Y A}$	$0.25 v_{0} \delta_{12}$
$J_{12}^{Z A}$	0

The splitting between the central lines are in the order

$W A>X A>Y A>Z A$

$W A<X A<Y A<Z A$
$W A<Y A<X A<Z A$
$Y A<W A<X A<Z A$

None of the above

Correct Answer

B
Marks
1

Question Description

A

B

C

D

E

Correct Answer
Marks

16 Question Description

A

B

C

D

E

Correct Answer
Marks

The thermal reaction between H_{2} and a halogen gas X_{2} is known to take place at the rate of $11.2 \mathrm{~mol}^{2} 1^{-2} \mathrm{sec}^{-1}$. The rate constant for the chain initiation step is found to be $1.12 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{sec}^{-1}$. What would be the chain length of the reaction if the reaction is started with $15 \mathrm{M} \mathrm{X}_{2}$.
0.11
0.67
0.84
1.50

None of the above

B

1

Question Description

A

B

Correct Answer

Marks

The approximate wavelength of absorbance maxima in the electronic spectra of the following molecule predicted by Woodward rules is

243 nm

264 nm

303 nm

344 nm

None of the above

C
1

Correct Answer	B
Marks	1

Question Description	NMR spectrum of a compound is recorded at 300 K and 270 K. In the two experiments I. At lower temperature there are larger availability of excited proton magnetic states II. The chemical shift, measured in ppm, will be different at the two temperatures
A	Both statements are correct
B	Both statements are incorrect
C	Statement I is correct, but Statement II is incorrect
D	Statement I is incorrect, but statement II is correct
E	None of the above
Correct Answer	A
Marks	1

The ESR spectrum of Napthyl radical anion is

A

B

D

Correct Answer
Marks

Doublet of Quintet

Quintet of a doublet

Quintet of a quintet

Quintet of Quartet

None of the above

C
1

$$
\begin{aligned}
& J_{q}=\frac{-1}{T^{2}} L_{q q} \frac{\partial T}{\partial x}+\frac{L_{q e} E}{T} \\
& I_{e}=\frac{L_{e e} E}{T}-\frac{1}{T^{2}} L_{e q} \frac{\partial T}{\partial x}
\end{aligned}
$$

Correct Answer

Marks

The Peltier heat (P) can be related to the Onsager coefficients as
$L_{q e}=\mathrm{PL}_{\mathrm{ee}}$
$L_{q e}=\mathrm{L}_{\mathrm{ee}} / \mathrm{P}$
$L_{\text {eq }}=-L_{\text {ee }} T P$
$L e q=-L_{q e} T / P$

None of the above

A

1

22	Question Description	The total number of IR Active vibrational modes in a linear symmetric BAB molecule is
	A	3N-8
	B	3N-6
	C	3N-4
	D	$3 \mathrm{~N}-2$
	E	None of the above
	Correct Answer	B
	Marks	1
23	Question Description	A superconducting material has critical temperature of 4 K at zero magnetic field and a critical field of 0.04 Tesla at 0 K . What is the critical field at 2 K ?
	A	0.02 Tesla
	B	0.03 Tesla
	C	0.04 Tesla
	D	0 Tesla
	E	None of the above
	Correct Answer	B
	Marks	1

Question Description

A

B

C

D

E

Correct Answer

Marks

A

B

C

D

E

Correct Answer

Question Description

Marks

The vibrational levels of the electronic ground state of the molecule can be obtained from

Absorption spectrum

Photoelectron spectrum

Fluorescence spectrum

X-Ray Spectrum

None of the above

C

1

If dH and dS represent the enthalpy and total entropy change for a chemical reaction at constant temperature and pressure and dSs and dsi represent the contributions of entropy change of surrounding and chemical reaction to the total entropy, then the rate of entropy production can be given by
$\frac{d S_{\mathrm{i}}}{d t}=\frac{-1}{T}\left(\frac{d G}{d t}\right)$
$\frac{d S_{i}}{d t}=\frac{1}{T}\left(\frac{d G}{d t}\right)$
$\frac{d S_{\mathrm{i}}}{d t}=\frac{-1}{P}\left(\frac{d G}{d t}\right)$
$\frac{d S_{i}}{d t}=\frac{1}{P}\left(\frac{d G}{d t}\right)$

None of the above

A

1

Question Description

A
B

C

D

E

Correct Answer

Marks

27 Question Description

A

B
C

D

E

Correct Answer C
Marks
1
A

1

Question Description	In
A	7
B	9
C	11
D	12
E	N
Correct Answer	C
Marks	1

An ionic salt crystallises as bcc (body centered cubic) lattice with side of the unit cell $2 \sqrt{ } 3 \AA$. Calculate the angle at which the second order reflection maxima may be expected from 111 plane when X-rays of wavelength 50 pm (picometer) is used.

30 degrees

60 degrees

45 degrees

75 degrees

None of the above

28

The potential energy curves of selected states of H 2 are shown below. If the necessary amount of energy is supplied, then predict the dissociation products I, II, and III.

Products I- $\mathrm{H}^{+}+\mathrm{H}(1 \mathrm{~s})$, Products II- $\mathrm{H}(1 \mathrm{~s})+\mathrm{H}(2 \mathrm{~s})$, Products III- $\mathrm{H}(1 \mathrm{~s})+\mathrm{H}(1 \mathrm{~s})$

Correct Answer B
Marks 1

Question Description

A

B

C

D

E

Correct Answer

Marks

The standard Gibbs energy change for the following reaction is $1354 \mathrm{kJmol}^{-1}$.
$2 \mathrm{Fe}^{3+}(a q)+3 M g(s) \rightarrow 2 F e(s)+3 M g^{2+}(a q)$
What is the difference between potentials of reduction and oxidation reactions? Given Faraday's constant is $96500 \mathrm{C} \mathrm{mol}^{-1}$.
14.3 V
7.0 V
4.7 V
2.3 V

None of the above

D

1

Question Description	Which of the following statement is true about a first-order phase transition of a substance I. The derivative of chemical potential with respect to temperature is discontinuous II. The second derivative of chemical potential with respect to temperature is continuous III. during transition, the constant pressure heat capacity, Cp , of the substance is infinite IV. during the transition, the enthalpy changes by a finite amount for an infinitesimal change in temperature
A	I, III and IV only
B	II, III and IV only
C	III and IV only
D	I and IV only
E	None of the above
Correct Answer	A
Marks	1

31 Question Description

A

B

C

Correct Answer
Marks

Buckminsterfullerene $\left(\mathrm{C}_{60}\right)$, an isotope of Carbon, can be approximated as a hollow sphere. What will be the wavelength of transition for a transition from \square $\square=4$ to $l=5$ state. Given the diameter of C_{60} is $7 \AA$ and mass of electron is $9 \times 10^{-31} \mathrm{~kg}$, mass of C_{60} is $720 \mathrm{~g} \mathrm{~mol}^{-1}$. Take $\mathrm{h}=6 \times 10^{-34} \mathrm{~J}$ sec
110.45 nm
217.8 nm
435.6 nm
1699.3 nm

None of the above

C
1

The term symbol for N_{2}^{+}molecular ion is

A	${ }^{1} \Sigma_{g}^{+}$
B	$2^{2} \Sigma_{g}^{+}$
C	$2 \Sigma_{u}^{+}$
D	${ }^{4} \Sigma_{u}^{-}$

A

B

C

Correct Answer

A

B

C

D

None of the above

Marks

Question Description

A

B

C

D

E

Correct Answer
Marks

34 Question Description

A
B

Correct Answer

Marks

The fundamental difference between Physical and Chemical deposition techniques of thin film production is

In Chemical deposition the material is synthesised while film is produced, while in physical deposition the material is already present
the physical deposition always produces non uniform films, while chemical deposition always yield uniform films

Chemical deposition can never be done with vapours, while physical deposition uses vapours of the material.

Physical deposition methods cannot be used for photovoltaic material while chemical deposition is the preferred method for preparing photovoltaic material films

None of the above

A

1

The Spherical harmonics, $Y_{l,}(\theta, \phi)$ of one electron atom are eigen functions of the square of total angular momentum ($\widehat{L^{2}}$) and the z -component of angular momentum $\left(\hat{L}_{z}\right)$ and respectively returns the eigenvalues of $k l$ and $k m$. What will be the value of $\left(\widehat{L_{x}^{2}}+\widehat{L_{y}^{2}}\right)$
$k_{I}-k_{m}$
$k_{I}-k_{m}^{2}$
$k_{l}^{2}+k_{m}$
$k_{l}+k_{m}^{2}$

None of the above

B

1

Question Description

A

B

C

D

E

Correct Answer

Marks

6 Question Description

A

B

C

D

E

Correct Answer

Marks

Question Description	A
A	13
B	13
C	13
D	N
E	D
Correct Answer	1
Marks	

A pace-maker based fuelled by a nuclear fuel is built. The fuel gives energy output of $0.5 \mathrm{~kW} / \mathrm{g}$. The half-life of the fuel element is 69.3 years. The pacepaker requires energy of 100 uW to function. What will be the approximate amount of fuel required to be placed in the pacemaker at the time of manufacture, if it has maintain the output power for 25 years. Assume a first order decay for the radioactive nuclei. Given $\ln =0.693, \mathrm{e}^{-0.25}=0.8$
$0.28 \mu \mathrm{~g}$
$0.56 \mu \mathrm{~g}$
$0.20 \mu \mathrm{~g}$
$0.18 \mu \mathrm{~g}$

None of the above

A
1

Assuming that the restoring forces for the bonds each of the molecule is same, the vibrational frequency for the following molecules will be in the order: ${ }^{13} \mathrm{C}^{18} \mathrm{O},{ }^{15} \mathrm{~N}{ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}{ }^{16} \mathrm{O},{ }^{14} \mathrm{~N}^{14} \mathrm{~N}$
${ }^{13} \mathrm{C}{ }^{18} \mathrm{O}>{ }^{15} \mathrm{~N}^{14} \mathrm{~N}={ }^{13} \mathrm{C}{ }^{16} \mathrm{O}>{ }^{14} \mathrm{~N}{ }^{14} \mathrm{~N}$
${ }^{13} \mathrm{C}{ }^{18} \mathrm{O}<{ }^{15} \mathrm{~N}{ }^{14} \mathrm{~N}={ }^{13} \mathrm{C}{ }^{16} \mathrm{O}<{ }^{14} \mathrm{~N}{ }^{14} \mathrm{~N}$
${ }^{13} \mathrm{C}{ }^{18} \mathrm{O}>{ }^{13} \mathrm{C}{ }^{16} \mathrm{O}>{ }^{15} \mathrm{~N}^{14} \mathrm{~N}>{ }^{14} \mathrm{~N}{ }^{14} \mathrm{~N}$
${ }^{13} \mathrm{C}{ }^{18} \mathrm{O}<{ }^{15} \mathrm{~N}^{14} \mathrm{~N}<{ }^{13} \mathrm{C}{ }^{16} \mathrm{O}<{ }^{14} \mathrm{~N}^{14} \mathrm{~N}$

None of the above

D
1

Correct Answer

Marks

The first stokes' and anti-stokes' line are respectively shifted by $12.312 \mathrm{~cm}^{-1}$ and $-12.312 \mathrm{~cm}^{-1}$ from the Rayleigh line in the rotational Raman spectrum of a linear triatomic molecule. What would be the position of $\mathrm{J}=5-6$ line in the spectrum?
$73.812 \mathrm{~cm}^{-1}$
$61.560 \mathrm{~cm}^{-1}$
$24.624 \mathrm{~cm}^{-1}$
$12.312 \mathrm{~cm}^{-1}$

None of the above

C
1

The Gibbs energy of mixing of two substances a and b is given by the following expression
$\Delta_{\text {mix }} G=R T\left\{x_{a} \ln x_{a}+x_{b} \ln x_{b}+\beta x_{a} x_{b}\right\}$
where x_{a} and x_{b} are the mole fractions of the two substances in the mixture. For what values of β would the phase separation be spontaneous?
$\beta=0$
$\beta<2$
$\beta>2$
$\beta=2$

None of the above

Correct Answer

Marks1

39	Question Description	The uncertainity in simultaneous measurement of total electronic energy and one of the components of orbital angular momentum of the electron in He^{+}ion is
	A	ih
	B	ћ
	C	2π
	D	0
	E	None of the above
	Correct Answer	D
	Marks	1
40	Question Description	The transport number for K^{+}ions is 0.490 . Estimate the liquid junction potential at 300 K for the cells $A g(s)\|A g C l(s)\| K C l(0.01 M)\|\|K C l(0.005 M)\| A g C l(s)\| A g(s)$ Given: $\mathrm{R}=8.314 \mathrm{~J}$ K-1 mol- $1, \ln 2=0.693, \ln 5=1.609$
	A	$-0.36 \mathrm{mV}$
	B	$-8.78 \mathrm{mV}$
	C	$+0.36 \mathrm{mV}$
	D	$+8.78 \mathrm{mV}$
	E	None of the above
	Correct Answer	A
	Marks	1

```
(i)HI HH+I*,(rate = I abs )
```

The following secondary reactions can possibly occur:
(ii) $\mathrm{H}+\mathrm{HI} \rightarrow \mathrm{H}_{2}+I\left(\right.$ rate $\left.=I_{\text {abs }}\right)$
(iii) $I^{*}+H I \rightarrow H+I_{2}$
(iv) $\mathrm{H}+\mathrm{H} \leftrightharpoons \mathrm{H}_{2}$
(v) $I+I \leftrightharpoons I_{2}$
(vi) $H+I \leftrightharpoons H I$

In the above, reactions (iv) and (vi) are highly exothermic and occurs only through three body collision. The step three is endothermic with a high activation energy.
Under the circumstances above, what will be the quantum yield for the process of decomposition of HI

1

Correct Answer

Marks
, - -

Correct Answer

Marks

The variation of total volume of a binary mixture is given by the following relationship
$v=1.9005+0.054 x-0.00943 x^{2}+0.0000586 x^{3}$ where x is the molefraction of solute. The plot of variation in partial molar volume of solute with the molefraction is expected to be

Straight line with positive slope

Straight line with negative slope
Parabolic

Sigmoidal

None of the above

C
1

Question Description

Correct Answer

Marks

The rate of forward and backward reactions at $2 \mathcal{T} \mathrm{C}$ for the reaction $A \leftrightharpoons B$ is $3.5 \times 10^{-4} \mathrm{~s}^{-1}$ and $1.5 \times 10^{-4} \mathrm{~s}^{-1}$. The mixture of A and B is maintained at $27^{\circ} \mathrm{C}$ long enough to attain equilibrium. The temperature of the mixture is increased by $50^{\circ} \mathrm{C}$ using a pulsed laser within 3 ns and the elevated temperature is maintained thereafter. How long would it take for the system to relax to equilibrium. Assume that the rate of reaction doubles for every $10^{\circ} \mathrm{C}$ rise in temperature.
2.0×10^{3} seconds
6.25×10^{1} seconds
2.0×10^{-3} seconds
6.25×10^{-3} seconds

None of the above

B
1

44 Question Description

A 1

B

C

D

E

Correct Answer

Marks
0.5
0.2
0.1

C

1

The wavefunction of the $n^{\text {th }}$ energy state of a particle in a 1D box of length 1 units is given by $\sqrt{\frac{2}{l}} \sin \left(\frac{n \pi x}{l}\right)$. If the length of the box is five units, What will be the probability of finding the particle within one unit length of the box as $\rightarrow \infty$?

None of the above

A
A

B

C

D

E

Correct Answer

A
Marks 1

The rate of a chemical reaction that could be catalysed by acid as well as base is given by rate $=k_{0}[S]+k_{H^{+}}[S]\left[\mathrm{H}^{+}\right]+k_{\mathrm{OH}^{-}}[S]\left[\mathrm{OH}^{-}\right]$

Where $[\mathrm{S}]$ is concentration of the substrate formed during the catalysed reaction, k 0 is the rate constant of uncatalysed reaction. The first order rate constant for the reaction can be given as
$k=\frac{\text { rate }}{[S]}$
A schematic plot of $\log _{10} k \mathrm{vs} \mathrm{pH}$ is given below.

At the point of intersection, I, the observed rate constant for the reaction would be
k_{0}
$2 k_{0}$
$k_{0} / 2$
$k_{0}+k_{H^{+}}$
None of the above

B

47 Question Description

A

B
C
D

E

Correct Answer
 D

Marks
1

The dipole moment operator is given by $\hat{\mu}=\operatorname{ercos} \phi$. The wave-function for an electron orbiting in the Bohr's orbit is given by $(\phi)=\frac{1}{\sqrt{\pi}} \sin \phi$, where $0 \leq \phi$ $\leq 2 \pi$. What is the average value of dipole moment of the electron in the Bohr's orbit?

None of the above

$$
\frac{-d C_{A}}{d t}=\left(k_{1}+k_{2}\right) C_{A}=k_{d s} C_{A}
$$

Where C_{A} is the concentration of A. What is the activation energy for this system if the activation energies of reactions with rate constants k_{1} and k_{2} respectively are $\mathrm{E}_{\mathrm{a} 1}$ and $\mathrm{E}_{\mathrm{a} 2}$?
$\frac{k_{1} E_{a 1}+k_{2} E_{a 2}}{k_{1}+k_{2}}$
$\frac{k_{1} E_{a 2}+k_{2} E_{a 1}}{k_{1}+k_{2}}$
$k_{1} E_{a 1}+k_{2} E_{a 2}$
$k_{1} E_{a 1} / k_{2} E_{a 2}$

None of the above

Correct Answer
Marks
A

1

49	Question Description	Nitration at a particular carbon atom causes 2097.2 Hz frequency shift of the $13 \mathrm{C}-$ NMR resonant signal. What is chemical shift expected in the magnetic field of 7.11 T . Given, gyromagnetic ratio of 13 C is $10.7\left[2 \pi \mathrm{MHz} \mathrm{T}{ }^{-1}\right]$.
	A	28 ppm downfield shift
	B	28 ppm upfield shift
	C	4.5 ppm downfield shift
	D	4.5 ppm upfield shift
	E	None of the above
	Correct Answer	A
	Marks	1
50	Question Description	N, N-dimethylformamide (DMF) shows two equally intense peaks for the two methyl protons. The two peaks coalesce around $120^{\circ} \mathrm{C}$ to give a broad peak which becomes sharper as temperature approaches $170^{\circ} \mathrm{C}$. If the separation between the two peaks of methyl protons at room temperature is 12.5 Hz , what is the first order rate constant for the exchange of two methyl protons at coalescence temperature
	A	$27.7 \mathrm{~s}^{-1}$
	B	$8.83 \mathrm{~s}^{-1}$
	C	$0.11 \mathrm{~s}^{-1}$
	D	$0.04 \mathrm{~s}^{-1}$
	E	None of the above
	Correct Answer	A
	Marks	1

Comprehension

Read the Passage below and answer the following questions:
We in India have our own special problems. No one can deny that some of them are of a serious nature and must be
attacked with vigour and determination. Our national objectives have been defined clearly. We aim at providing every
citizen with basic necessities and complete freedom to lead a life of his or her choice. We aim to create a democratic
society, strong and free, in which every citizen, irrespective of his religious beliefs, will occupy an equal and honoured
place, and be given full and equal opportunities for growth and service. We aim at ending untouchability and doing
away with the present inequalities of status and wealth. We are opposed to the concentration of wealth in a few hands.

Question Description
"No one can deny that some of them are of a serious nature and must be attacked with vigour and determination."
Identify from the following options, the one that comes closest in meaning to the overall sense that it conveys.

Comprehension	Read the Passage below and answer the following questions: We in India have our own special problems. No one can deny that some of them are of a serious nature and must be attacked with vigour and determination. Our national objectives have been defined clearly. We aim at providing every citizen with basic necessities and complete freedom to lead a life of his or her choice. We aim to create a democratic society, strong and free, in which every citizen, irrespective of his religious beliefs, will occupy an equal and honoured place, and be given full and equal opportunities for growth and service. We aim at ending untouchability and doing away with the present inequalities of status and wealth. We are opposed to the concentration of wealth in a few hands.
Question Description	The passage implies that the real challenge taken up by our society is
A	ending untouchability and inequality
B	creating a democratic society
C	attacking problems with vigour
D	concentrating wealth among few people
E	None of the above
Correct Answer	A
Marks	1

Comprehension	Read the Passage below and answer the following questions:
	We in India have our own special problems. No one can deny that some of them are of a serious nature and must be attacked with vigour and determination. Our national objectives have been defined clearly. We aim at providing every citizen with basic necessities and complete freedom to lead a life of his or her choice. We aim to create a democratic society, strong and free, in which every citizen, irrespective of his religious beliefs, will occupy an equal and honoured place, and be given full and equal opportunities for growth and service. We aim at ending untouchability and doing away with the present inequalities of status and wealth. We are opposed to the concentration of wealth in a few hands.
Question Description	Identify the option from the passage which is antonymous to the term "lethargy"
A	status
B	determination
C	vigour
D	problems
E	None of the above
Correct Answer	C
Marks	1

Question Description

A

B

C

D

E

Correct Answer
Marks

A

B

C

D

E

Correct Answer B

Marks

57 Question Description

B
-1

The world's first wildlife conservation bond Has been issued by the World Bank for which animal?

White elephant

Black Rhinoceros

Asiatic Lion

Bengal Tiger

None of the above

B

1

Question Description

India set to launch 1st Human Space Mission Gaganyaan\& 1st Human Ocean Mission in which year?

A
2026

B

C
2023

2025

D

E
Correct Answer B
Marks
1

Question Description

A

B

C

D

E

Correct Answer
Marks

The pass located at the southern end of the Nilgiri Hills in south India is called
the Palghat gap
the Bhorghat pass
the Thalgat pass
the Bolan pass

None of the above
A
1

D

Correct Answer

Marks

Haryana

Uttar Pradesh

Kerala

Telangana

None of the above

B
1

Babar Azam

Joe Root

Rohit Sharma

Jos Buttler

Correct Answer
Marks
None of the above

A
1

Question Description

A

B

C

D

E

Correct Answer
Marks

Question Description

A
B

C

D

E

Correct Answer
Marks
Marks 1
Iran

UAE

C

The books 'Loktantra ke Swar' and 'The Republican Ethic' have selected speeches of \qquad -

Atal Bihari Vajpayee

Manmohan Singh

Narendra Modi

Ram Nath Kovind

None of the above

D
1

Which country has built World's largest petroleum research centre?

Kuwait

Qatar

None of the above

| 64 Question Description | The purpose of choke in tube light is ? |
| :--- | :--- | :--- |
| A | To decrease the current |
| B | To increase the current |
| D | To decrease the voltage momentarily |
| E | To increase the voltage momentarily |
| Correct Answer | None of the above |
| Marks | 1 |
| Question Description | Federation Cup, World Cup, Allywyn International Trophy and Challenge Cup are awarded to winners of |
| A | Tennis |
| C | Volleyball |
| C | Basketball |
| Cricket | |

66 Question Description

A

B

C

Correct Answer
Marks

In a class, there are 36 very tall boys. If these constitute three-fourths of the boys and the total number of boys is two-thirds of the total number of students in the class, what is the total number of girls in the class?

None of the above

67 Question Description A

B

C

Correct Answer

Marks

There are six Indian cricketers, namely Virat, Rohit, Dhoni, Raina, Ishant, and Rahane. Among them two are batsmen, while others are wicket keeper, fast bowler, all rounder and spinner, though not necessarily in the same order. Also, each of these cricketers belongs to a different city, namely Chandigarh, Delhi, Ranchi, Chennai, Mumbai and Jaipur.
I. Virat, a fast bowler, is neither from Chennai nor from Jaipur.
II. The one who is from Mumbai is a spinner. Neither Raina nor Rohit is from Mumbai.
III. Rohit is the all-rounder of the team and is from Jaipur.
IV. Virat is not from Ranchi while Rahane is not from Chennai.
V. Raina the wicket keeper is from Delhi. Neither Dhoni nor Rahane is a spinner.

Who among the following is from Chandigarh?

Dhoni
Virat

Ishant
Rahane

None of the above

B

1

68 Question Description	AERIE : EAGLE::?
A	bridge : architect
B	unit : apartment
D	kennel : veterinarian
E	house : person
Marrect Answer	None of the above
Question Description	D
A	BLOCKED : YOLXPVW :: ? : OZFMMXS
B	LAUNNCH
C	RESULTS
Marks	LABOURS

Correct Answer	D
Marks	1

71	Question Description	Pointing to a boy in a photograph, a girl said, "His father's mother is the mother-in-law of my brother's mother." How is the person in photograph related to the girl?
	A	Maternal Uncle
	B	Grandfather
	C	Brother
	D	Paternal Uncle
	E	None of the above
	Correct Answer	C
	Marks	1
72	Question Description	Select the one which is different from the other three responses.
	A	$(96,24)$
	B	$(39,18)$
	C	$(81,54)$
	D	$(82,64)$
	E	None of the above
	Correct Answer	D
	Marks	1

| Question Description | If first, third and sixth letters of the word "LINGUIST" are changed to their immediately preceding letters as per English alphabet series and fourth and
 seventh letters are changed to their immediately succeeding letters as per English alphabet series, then how many letters (in English alphabet series) are there
 between the third and fifth letters of the newly formed word? |
| :--- | :--- | :--- |
| A | 5 |
| B | 6 |
| C | 7 |
| D | 8 |
| E | None of the above |
| Correct Answer | C |
| Marks | 1 |

Following questions are based on the five three-digit numbers given below:
284, 312, 437, 585, 696
If 2 is added to the first digit of each of the numbers how many numbers thus formed will be divisible by three?

A
None

One

Correct Answer
Marks
Two

Three

None of the above

A
1

How far is point A with respect to point B ?

18 km

20 km

35 km

25 km

None of the above

Correct Answer
 B

Marks
1

