Computer Based Examination System

Exported On *		2023/11/06 9:52:09
Title *		Question Paper Answer Key
OES Exam *		GPSC07202319 / Assistant Professors in Government College in Physics/ Completed / 2023-11-05
1 Question Description	Hamiltonian of sp and λ is constant. $\frac{d\left(S_{x}\right)}{d t}$ (A) $-\frac{\lambda}{\hbar} B_{0}\left\langle S_{y}\right\rangle$ (B) $\frac{\lambda}{n} B_{0}\left\langle S_{x}\right\rangle$ (C) $\frac{\lambda}{\mathrm{n}} B_{0}\left\langle S_{z}\right\rangle$ (D) $-\frac{\lambda}{\mathrm{h}} B_{0}\left(S_{x}\right)$	in $1 / 2$ particle in magnetic field $\vec{B}=B_{0} \hat{k}$ is $H=\lambda \vec{S} . \vec{B}$ where \vec{S} is its spin (in the unit of \hbar) If the average spin density is $\langle\hat{S}\rangle$ for an ensemble of such non-interacting particles, then
A	A	
B	B	
C	C	
D	D	
E	None of the a	bove
Correct Answer	A	
Marks	1	

2 Question Description

A
How many different photons can be emitted by hydrogen atoms that undergo transitions to the ground state from the $\mathrm{n}=6$ state? (Consider there is non-degeneracy)

10

Marks

	The electric field \vec{E} and the magnetic filed \vec{B} corresponding to the scalar and vector potentials, $V(x, y, z, t)=$ $0, \overrightarrow{\mathrm{~A}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1 / 2 \hat{\mathrm{~J}} \mu_{0} \mathrm{~A}_{0}(\mathrm{ct}+\mathrm{x})$. Where A_{0} is a constant, are (A) $\vec{E}=0$ and $\vec{B}=1 / 2 \hat{\jmath} \mu_{0} A_{0}$ (B) $\overrightarrow{\mathrm{E}}=1 / 2 \hat{\mu} \mu_{0} \mathrm{~A}_{0} \mathrm{C}$ and $\overrightarrow{\mathrm{B}}=-1 / 2 \hat{\mu} \mu_{0} \mathrm{~A}_{0}$ (C) $\overrightarrow{\mathrm{E}}=-1 / 2 \hat{\jmath} \mu_{0} \mathrm{~A}_{0} \mathrm{C}$ and $\overrightarrow{\mathrm{B}}=1 / 2 \hat{\mathrm{~K}} \mu_{0} \mathrm{~A}_{0}$ (D) $\overrightarrow{\mathrm{E}}=0$ and $\overrightarrow{\mathrm{B}}=1 / 2 \hat{\mathrm{k}} \mu_{0} A_{0}$
A	A
B	B
C	C
D	D
E	None of the above
Correct Answer	C
Marks	1

None of the above

Correct Answer D
Marks

The potential of a diatomic molecule as a function of the distance r between the atoms is

 given by $V(r)=-\frac{a}{r^{6}}+\frac{b}{r^{12}}$. The value of the potential at equilibrium separation betweenthe atoms is:
a. $-\frac{4 a^{2}}{b}$
b. $-\frac{2 a^{2}}{b}$
c. $-\frac{a^{2}}{2 b}$
d. $-\frac{a^{2}}{4 b}$
b
c
d

1

5 Question Description

A	A
B	B
C	C
D	D
E	N
Correct Answer	B
Marks	1

6 Question Description

A
Total power emitted by a spherical black body of radius R at a temperature T is P_{1}. If P_{2} is total power emitted by another spherical black body of radius 2 R at a temperature $\mathrm{T} / 2$. Then what will be the value of
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$?
(A) 2
(B) 4
(C) 6
(D) 8

A

B

C

D

None of the above

Correct Answer

B
Marks

7 Question Description

Consider a system of non-interacting particles in d-dimensional obeying the dispersion

relation $\varepsilon=A k^{s}$, where ε is the energy, k is the wave vector; s is an integer, and A is constant. The density of states, $N(\varepsilon)$, is proportional to
a. ε
b. $\varepsilon^{\frac{d}{s}-1}$
c. $\varepsilon^{\frac{d}{s}+1}$
d. $\varepsilon^{\frac{s}{d}+1}$

None of the above

Correct Answer
Marks
a
b
c
d
Marks 1

A

Correct Answer

Marks

A fixed point of a one - dimensional harmonic oscillator obeying the

Unstable spiral

Saddle

Stable spiral

Elliptic

None of the above

D
1

An electromagnetic wave is propagating in a medium of refractive index $n=1-\left(\frac{\omega}{2 \omega_{o}}\right)^{2}$, then $\frac{v_{g}}{v_{p}}$ at $\omega=\frac{\omega_{o}}{2}$
(A) $\frac{15}{13}$
(B) $\frac{13}{15}$
(C) $\frac{5}{3}$
(D) $\frac{3}{5}$

A
A

B

C

D

E

Correct Answer
Marks
1
Assume that the multiplet is described well by the LS - coupling scheme and Lande's interval rule, namely
$E(J)-E(J-1)=A(J)$, where A is a constant. The term notations for this multiplet is
(A) ${ }^{3} \mathrm{P}_{0,1,2}$
(B) ${ }^{3} \mathrm{~F}_{2,3,4}$
(C) ${ }^{3} \mathrm{G}_{3,4,5}$
(D) ${ }^{3} \mathrm{D}_{1,2,3}$

A

B

C

D

None of the above

Correct Answer
 D
 Marks 1

Question Description	The magnetic field associated with the electric field vector $\mathbf{E}=E_{o} \sin (k z-\omega t) \hat{j}$ is given by a. $\quad \mathbf{B}=-\frac{E_{o}}{c} \sin (k z-\omega t) \hat{i}$ b. $\quad \mathbf{B}=\frac{E_{o}}{c} \sin (k z-\omega t) \hat{i}$ c. $\mathbf{B}=-\frac{E_{o}}{c} \sin (k z-\omega t) \hat{j}$ d. $\mathbf{B}=\frac{E_{o}}{c} \sin (k z-\omega t) \hat{k}$
A	a
B	b
C	c
D	d
E	None of the above
Correct Answer	A
Marks	1

	The Boolean expression $P+\bar{P} Q$, where P and Q are the inputs to a circuit, represents the following logic gate a. AND b. NAND c. NOT d. OR
A	a
B	b
C	c
D	d
Correct Answer	None of the above
Marks	D

14 Question Description

A

B

C

D

E

Correct Answer
Marks

A cylinder rolling without slipping down a rough inclined plane of angle θ is an example

Scleronomic, conservative system only

Scleronomic, holonomic, conservative system only

Conservative system only

Scleronomic system only

None of the above

B

1

	Which of the following is an analytic function of z everywhere in the complex plane? a. \sqrt{z} b. z^{2} c. $\|z\|^{2}$ d. $(z)^{*}$
A	a
B	b
C	c
D	d
E	None of the above
Correct Answer	B
Marks	1

	If a^{\dagger} and a are creation and annihilation operators for SHO, then which of the following is not a Hermitian operator? a. $a a^{\dagger}+a^{\dagger} a$ b. $a a^{\dagger}-a^{\dagger} a$ c. $i\left(a^{\dagger}-a\right)$ d. $i\left(a^{\dagger}+a\right)$
A	a
B	b
C	c
D	d
E	None of the above
Correct Answer	D
Marks	1

Question Description

The entropy S of a system of N spins, which may align either in the upward or in the downward direction, is given by $S=k_{B} N[p \ln (p)+(1-p) \ln (1-p)]$. Here, k_{B} is the
Boltzmann constant. The probability of alignment in the upward direction is p. The value of p, at which the entropy is maximum, is
a. 0.25
b. 0.5
c. 0.75
d. 1.0

B

C

D

None of the above

Correct Answer
 B

Marks
Maxk - 1

Correct Answer

Marks
The total power emitted by a spherical black body of radius R at a temperature T is P_{1}. Let

P_{2} be the total power emitted by another spherical black body of radius $2 R$ kept at

temperature $2 T$. The ratio $\frac{P_{1}}{P_{2}}$ is

a. 4
b. 16
c. $\frac{1}{4}$
d. $\frac{1}{16}$
a
b
c
d
None of the above

C
1

A

B

Correct Answer

Marks
A
1
a
b
c
d

The number of ways in which N identical bosons can be distributed in two energy levels, is
a. $N+1$
b. $\frac{N(N+1)}{2}$
c. $\frac{N(N-1)}{2}$
d. N

None of the above

A

B

C

D

E

Correct Answer

Marks
A
1

Using the shell model, find the total angular momentum and the parity of ${ }_{3}^{7} \mathrm{Li}$ nuclei.
(A) $\frac{3}{2}$ with negative parity
(B) $\frac{5}{2}$ with positive parity
(C) $\frac{1}{2}$ with negative parity
(D) $\frac{2}{3}$ with positive parity

B

C

D

None of the above
of the particle is E , its time period in a periodic motion is proportional to
(A) $E^{\frac{1}{3}}$ (B) $E^{-\frac{1}{4}}$ (C) $E^{\frac{2}{3}}$ (D) $E^{-\frac{1}{2}}$

B

C

D

None of the above

Correct Answer	B
Marks	1

Question Description

Correct Answer

Marks
The gauge transforms of \vec{A} and ϕ satisfy the Lorentz conditions, if and only if the gauge
functions themselves satisfy

Wave equation

Harmite equation

Legendre equation

Langerre equation

None of the above

A

1

Consider electrons in graphene, which is a planar monoatomic layer of carbon atoms. If the dispersion

 relation of the electrons is taken to be $\varepsilon(k)=c k^{2}$ (where c is constant) over the entire k -space, then the Fermi energy ε_{f} depends on the number density of electrons ρ as:(A) $\rho^{\frac{1}{2}}$
(B) ρ
(C) ρ^{2}
(D) ρ^{0}

A

B

C

D

None of the above

Correct Answer
 B

Marks 1

	Consider a differential equation $\frac{d y}{d x}+a y=e^{-b t}$ with initial conditions $y(0)=0$, then find Laplace transformation of $y(t):$ A $\frac{1}{s(s+a)}(\mathrm{B}) \frac{1}{(s+a)(s+b)}(\mathrm{C}) \frac{1}{a(s+b)}(\mathrm{D}) \frac{e^{-a s-e^{-b s}}}{2}$
B	A
C	B
D	C
E	D
Correct Answer	None of the above
Marks	B

The dependence of current I on the voltage V of a certain device is given by $I=I_{0}\left(1-\frac{V}{V_{0}}\right)^{2}$, where I_{0} and V_{0} are constants. In an experiment, the current I is measured as the voltage V applied across the device increases. The parameters V_{0} and $\sqrt{I_{0}}$ can be graphically determined as
a. the slope and the y-intercept of the $I-V^{2}$ graph.
b. the negative of the ratio of the y-intercept and the slope, and the y-intercept of the $I-V^{2}$ graph.
c. the slope and the y -intercept of the $\sqrt{I_{0}}-V$ graph.
d. the negative of the ratio of the y-intercept and the slope, and the y-intercept of the $\sqrt{I_{0}}-V$ graph.
Correct Answer D

The function $f(x)=e^{\sin x}$ is expanded as a Taylor series in x, around $x=0$, in the form

$f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. The value of $a_{0}+a_{1}+a_{2}$ is
a. 0
b. $\frac{3}{2}$
c. $\frac{5}{2}$
d. ${ }^{2}$

A

B

Correct Answer

Marks
a
b

None of the above

C
1

A

B

C

D

E

Correct Answer
 Marks
 C
 1

A

B

C

D

Consider a system whose three energy levels are given by $\varepsilon, 2 \varepsilon$ and 3ε. The energy level 2ε is two-fold degenerate and the other two are non-degenerate. Find the partition function of the system if $\beta=\frac{1}{k_{B} T}$.
(A) $e^{-\beta \varepsilon}\left(1-e^{-\beta \varepsilon}\right)^{2}$
(B) $\left(1-e^{-\beta \varepsilon}\right)^{2}$
(C) $e^{-\beta \varepsilon}\left(1+e^{-\beta \varepsilon}\right)^{2}$
(D) $e^{-\beta \varepsilon}$

None of the above

The value of the integral $I=\int_{0}^{2 \pi} \frac{d \theta}{(5+4 \operatorname{Cos} \theta)^{2}}$ is
A) $\frac{10 \pi}{49}$
B) $\frac{10 \pi}{27}$
C) $\frac{8 \pi}{25}$
D) $\frac{10 \pi}{9}$

A

Correct Answer

Marks
A

B

C

D

None of the above

B
1

In case of a Geiger-Muller (GM) counter, which one of the following statements is CORRECT?

A
Energy of the particles detected can be distinguished

Operating voltage of the detector is few tens of Volts

Multiplication factor of the detector is of the order of 10^{10}

Type of the particles detected can be identified

None of the above
Marks 1

The Legrongion equation of motion for a simple pendulum is
A) $\ddot{\theta}=\frac{-g}{e} \operatorname{Sin} \theta$
B) $\ddot{\theta}=\frac{g}{e} \operatorname{Sin} \theta$
C) $\ddot{\theta}=\frac{g}{e} \operatorname{Cos} \theta$
D) $\ddot{\theta}=\frac{-g}{e} \operatorname{Cos} \theta$

D

None of the above

Correct Answer
A
Marks
1
a. $\frac{3 \mu_{0} \lambda \omega}{2}$
b. $\frac{\mu_{0}{ }^{2} \omega}{2}$
c. $\frac{3 \mu_{0} \omega \omega}{\pi}$
d. $\frac{3 \mu_{0} \lambda \omega}{2 \pi}$

B

C

D E

None of the above

Correct Answer B

Marks

	What is the angle between the surfaces $y^{2}+z^{2}=2$ and $y^{2}-x^{2}=0$ at the point a. $1,0^{\circ}$ b. 15° c. 30° d. 60°		
A		\quad	a
:---			
B			

A

Correct Answer
Marks

A can exchange neither energy nor particles with B

A can exchange only energy with B

A can exchange only particles with B

A can exchange both energy and particles with B

None of the above

B

1

Correct Answer	C
Marks	1

In Young's double-slit experiment, there are two slits of unequal widths, one being four

 times wider than the other. If $I_{\max }$ and $I_{\min }$ denote the intensities at a neighbouring
maximum and a minimum, then the ratio $\frac{I_{\text {min }}}{I}$ is

a. 0
b. $\frac{1}{4}$
c. $\frac{3}{5}$
d. $\frac{1}{9}$

None of the above

Correct Answer
Marks
\square
Marks $\quad 1$

	In the case of fields of arbitrary moving charges, the magnetic field vectors is such that A) $\vec{B}=\frac{\hat{n} X \vec{E}}{C^{2}}$ B) $\vec{B}=\frac{\hat{n} X \vec{E}}{C}$ C) $\vec{B}=\frac{\hat{n} \cdot \vec{E}}{C}$ D) $\vec{B}=\frac{\hat{n} \cdot \vec{E}}{C}$
A	A
B	B
C	C
D	D
E	None of the above
Correct Answer	B
Marks	1

A

Correct Answer

Marks

A particle of charge q and mass m, which is moving in a one-dimensional harmonic potential of frequency ω, is subject to a weak electric field ε in the x-direction. What is the energy of
the $n^{\text {th }}$ state to the first non-zero correction?
a. $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega-\frac{q^{2} \varepsilon^{2}}{2 m \omega^{2}}$
b. $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega-\frac{2 m q^{2} \varepsilon^{2}}{2 m \omega^{2}}$
c. $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega-\frac{2 q^{2} \varepsilon^{2}}{m \omega^{2}}$
d. $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega-\frac{4 q^{2} \varepsilon^{2}}{3 m \omega^{2}}$
a
b
c
d

None of the above

A
1

A

Correct Answer
Marks

39 Question Description

A

B

C

D

E

Correct Answer
Marks

The criterion for application of quantum statistics is

A material should be at high temperature

A material should be at high condensed

The de Broglie wavelength of particle constituting the particle is greater than mean fee path

Chemical potential is high

None of the above

C
1

	The first order correction in ground state energy of one dimension infinite potential box of width L. If it is subjected to perturbation $H_{p}=\alpha x$ is (A) 0				
(B) $\frac{\alpha}{L}\left(\frac{L^{2}}{2}-\frac{\sqrt{3}}{4 \pi}\right)$					
(C) $\frac{\alpha L}{2}$					
(D) $\frac{\alpha L}{4}$		$	$	A	A
:---	:---				
B	C				
D	D				
E	None of the above				
Correct Answer	C				
Marks	1				

A

B
Correct Answer

A
Marks
1
a
b
c
d

The Hamiltonian for a particle of mass m is $H=\frac{p^{2}}{2 m}+k q t$, where q and p are the generalized coordinate and momentum, respectively, t is time and k is a constant. For the initial condition, $q=0$ and $p=0$ at $t=0, q(t) \propto t^{\alpha}$, the value of α is
a. 3
b. 2
$\begin{array}{ll}\text { b. } & -3 \\ \text { c. } & -3\end{array}$
$\begin{array}{ll}\text { c. } & -3 \\ \text { d. } & -2\end{array}$

None of the above

Question Description

Correct Answer

Marks

Which of the following statements is incorrect?

Indistinguishable particles obey Maxwell-Boltzmann statistics.

All particles of an ideal Bose gas occupy a single energy state at $T=0$.

The integral spin particles obey Bose-Einstein statistics.

Protons obey Fermi-Dirac statistics

None of the above

A
1

	An electron in a hydrogen atom is in the state $n=3, l=2, m=-2$. Let, $\widehat{L_{y}}$ denote the y -component of the orbital angular momentum operator. If $\left(\Delta \widehat{L_{y}}\right)^{2}=\frac{\alpha^{2} h^{2}}{4 \pi^{2}}$, the value of α is a. 0 b. $\frac{1}{2}$ c. 1 d. 2
A	a
B	b
C	c
D	d
E	None of the above
Correct Answer	C
Marks	1

X-ray of wavelength $\lambda=a$ is reflected from the [110] plane of a simple cubic lattice. If
the lattice constant is a, the corresponding Bragg angle (in radians) is
(A) $\frac{\pi}{3}$
(B) $\frac{\frac{3}{4}}{4}$
(C) $\frac{\pi}{6}$
(D) $\frac{6}{2}$

A

B

C

D

E

Correct Answer
 Marks
 B
 1

A

B

C

D

None of the above

The value of integral $I=\oint \frac{d z}{z^{2} \sinh z}$ on the contour $C:|z|=1$ is
(A) 0
(B) $\frac{2 \pi i}{6}$
(C) $-\frac{2 \pi i}{6}$
(D) $\frac{2 \pi i}{3}$

A

B

C

D

E

Correct Answer

Marks

A

B

C

D

None of the above

C

1

Correct Answer
Marks

Which of the following statement is correct:

The hall coefficient R_{H} is positive for negative charge carriers

The hall coefficient R_{H} is negative for positive charge carriers.

The lower the carrier concentration, the greater the magnitude of the hall coefficient.

The higher the carrier concentration, the greater the magnitude of the hall coefficient.

None of the above

C
1

| | Let's say we have a gas sample whose temperature is varying from T_{1} to T_{2} at a constant pressure of P. If the
 relation between Pressure P, Volume V and Temperature T is given by the relation $P=\frac{\alpha T-\beta T^{2}}{v}$ then find the
 word done by the gas.
 (A) $\alpha\left(T_{2}-T_{1}\right)-\beta\left(T_{2}^{2}-T_{1}^{2}\right)$
 (B) $\alpha\left(T_{2}+T_{1}\right)-\beta\left(T_{2}^{2}-T_{2}^{2}\right)$
 (C) $\left.\alpha\left(T_{2}-T_{1}\right)-\beta T_{2}^{2}+T_{1}^{2}\right)$
 (D) $\alpha\left(T_{2}+T_{1}\right)-\beta\left(T_{2}^{2}+T_{1}^{2}\right)$ |
| :--- | :--- | :--- |
| A | A |
| B | B |
| C | C |
| D | D |
| E | None of the above |
| Correct Answer | A |
| Marks | 1 |

A

B

C

Correct Answer

Marks

Counters

OP - Amps

An integrator

Differentiator

None of the above

C
1

The value of the electric and magnetic fields in a particular reference frame (in suitable units) are

$$
\mathrm{E}=2 \hat{i}+\hat{j}+2 \hat{k}, \quad \mathrm{~B}=\sqrt{\frac{71}{32}} \hat{i}+\frac{3}{4} \hat{j}-\sqrt{\frac{71}{32}} \hat{k}
$$

In another inertial frame, which moves at a constant velocity with respect to the first frame, the electric field and magnetic field consistent with the previous observations are
a. $\quad \mathbf{E}^{\prime}=3 \hat{i}+\widehat{5 j}+\sqrt{71 k}$,
$\mathbf{B}^{\prime}=4 \hat{i}+\frac{3}{2} \hat{j}$
b. $\quad \mathbf{E}^{\prime}=\sqrt{3} \hat{i}+\sqrt{\frac{33}{4}} \hat{j}$,
$\mathbf{B}^{\prime}=\sqrt{\frac{3}{16}} \hat{i}+\sqrt{\frac{113}{16}} \hat{k}$
c. $\mathrm{E}^{\prime}=\sqrt{\frac{71}{32}} \hat{i}+\frac{3}{4} \hat{j}-\sqrt{\frac{71}{32}} \hat{k}$,
$B^{\prime}=2 \hat{i}+\hat{j}+2 \hat{k}$
d. $\mathbf{E}^{\prime}=\hat{i}+\hat{j}+\frac{3}{4} \hat{k}$,
$\mathbf{B}^{\prime}=4 \hat{i}-4 \hat{j}+\hat{k}$
Correct Answer B
Marks 1

Comprehension	Read the following passage and answer the questions below: Americans, I am aware, believe that they will produce Literature and Art, as they produce coal and steel and oil, by the judicious application of intelligence and capital; but here they do themselves injustice. The qualities that are making them masters of the world, unfit them for slighter and less serious pursuits. The future is for them the kingdom of elevators, of telephones, of motorcars, of flying machines. Let them not idly hark back, misled by the effete traditions, to the old European dream of the kingdom of heaven ...let them say, "for Europe, Letters and Art", let America rule the world by syndicates and trusts!" For such is her true destiny, and that she conceives it to be such, is evidenced by the determination with which she has suppressed all irrelevant activities. Every kind of disinterested intellectual operation she has severely repudiated.
Question Description	The essence of American character, as suggested in the passage, lies in the phrase
A	disinterested intellectual operation
B	production of coal and steel and oil
C	desire for mastery over the world
D	sane use of intelligence and wealth
E	None of the above
Correct Answer	D
Marks	1

Comprehension	Read the following passage and answer the questions below: Americans, I am aware, believe that they will produce Literature and Art, as they produce coal and steel and oil, by the judicious application of intelligence and capital; but here they do themselves injustice. The qualities that are making them masters of the world, unfit them for slighter and less serious pursuits. The future is for them the kingdom of elevators, of telephones, of motorcars, of flying machines. Let them not idly hark back, misled by the effete traditions, to the old European dream of the kingdom of heaven ...let them say, "for Europe, Letters and Art", let America rule the world by syndicates and trusts!" For such is her true destiny, and that she conceives it to be such, is evidenced by the determination with which she has suppressed all irrelevant activities. Every kind of disinterested intellectual operation she has severely repudiated.
Question Description	The following is not a synonym for "effete"
A	affected
B	effective
C	enfeebled
D	effeminate
E	None of the above
Correct Answer	B
Marks	1

Comprehension	Read the following passage and answer the questions below: Americans, I am aware, believe that they will produce Literature and Art, as they produce coal and steel and oil, by the judicious application of intelligence and capital; but here they do themselves injustice. The qualities that are making them masters of the world, unfit them for slighter and less serious pursuits. The future is for them the kingdom of elevators, of telephones, of motorcars, of flying machines. Let them not idly hark back, misled by the effete traditions, to the old European dream of the kingdom of heaven ...let them say, "for Europe, Letters and Art", let America rule the world by syndicates and trusts!" For such is her true destiny, and that she conceives it to be such, is evidenced by the determination with which she has suppressed all irrelevant activities. Every kind of disinterested intellectual operation she has severely repudiated.
Question Description	Select the option closest in meaning to the phrase "severely repudiated" in the passage
A	refused to fulfil
B	refused to discharge
C	rejected outright
D	refused to accept
E	None of the above
Correct Answer	C
Marks	1

56	Question Description	Which case has the Supreme Court referred to a five-judge Constitution Bench recently?
	A	Aadhaar case
	B	Electoral bond case
	C	Pegasus case
	D	Farm laws case
	E	None of the above
	Correct Answer	B
	Marks	1
57	Question Description	How many member countries are there in NATO in $2023 ?$
	A	31
	B	30
	C	29
	D	35
	E	None of the above
	Correct Answer	A
	Marks	1

58	Question Description	Where was the first edition of the Indian Military Heritage Festival inaugurated?
	A	Mumbai
	B	Bangalore
	C	Chennai
	D	New Delhi
	E	None of the above
	Correct Answer	D
	Marks	1
59	Question Description	What is the name of the recent potential cyclonic storm formed in the Arabian Sea?
	A	Cyclone Nisarga
	B	Cyclone Tej
	C	Cyclone Biparjoy
	D	Cyclone Asani
	E	None of the above
	Correct Answer	B
	Marks	1

```
6 0 \text { Question Description}
Which country won the gold medal in the men's hockey event at the 2023 Asian Games?
A
Japan
South Korea
Pakistan
India
None of the above
Correct Answer D
Marks 1
```

61 Question Description

Correct Answer

Marks

Which city in India is aiming to become the first wetland city?

Udaipur

Jaipur

Jodhpur

Kota

None of the above

A
1

62	Question Description	Which city is known as the "Tea City of India"?
	A	Kolkata
	B	Guwahati
	C	Darjeeling
	D	Dibrugarh
	E	None of the above
	Correct Answer	D
	Marks	1
63	Question Description	What is the name of India's first semi-high-speed regional rail service?
	A	Namo Bharat
	B	Rapid B
	C	Vande Bharat
	D	Speed X
	E	None of the above
	Correct Answer	A
	Marks	1

```
6 4 \text { Question Description}
```

A

Correct Answer
Marks

Question Description

A

B

C

D

E

Correct Answer
Marks

Who won the gold medal in the men's T63 high jump event at the Asian Para Games $2023 ?$

Pranav Soorma

Shailesh Kumar

Mariyappan Thangavelu

Padhiyar Govindbhai

None of the above

B

1

```
Which Indian aerospace organization unveiled its Vikram-1 orbital rocket in October 2023?
Skyroot Aerospace
Indian Space Research Organisation
Bharat Heavy Electricals Limited
Bharat Dynamics Limited
None of the above
A
1
```

66	Question Description	Find the missing alphabet in the following series? O, T, T, F, F, S, S, E, ?
	A	E
	B	N
	C	G
	D	H
	E	None of the above
	Correct Answer	C
	Marks	1
67	Question Description	If BEAUTY is coded as DHEZZF, how will FLOWER be written in that code?
	A	HSOBYK
	B	HBOSKY
	C	SBKYOH
	D	HOSBKY
	E	None of the above
	Correct Answer	D
	Marks	1

Select the pair of words that are related to each other in the same way as the two capitalized words PAPER:WOOD

Correct Answer

Marks
ink: colour
brush: paint
brick: clay
cloth: dresses

None of the above

C
1

	Statements
	I. All locks are keys
	II. All chains are locks
	Conclusions
A	all keys are locks
B	all chains are keys
C	all locks are chains
D	some chains are not keys
E	None of the above
Correct Answer	B
Marks	1

In an interview panel, seven members are sitting in a row. A is in between $\mathrm{D} \& \mathrm{~F}, \mathrm{C}$ is in between $\mathrm{F} \& \mathrm{G} . \mathrm{G}$ is between $\mathrm{C} \& \mathrm{E}$ and D is in between $B \& A$. Find the person sitting in the middle.

A
D

None of the above

Correct Answer
Marks
Marks 1

A

B

C

D

Correct Answer

Marks

None of the above

A
1

Raju's age is three years more than four times Balu's age. After five years, Raju's age will be one year more than thrice Balu's age. What is Raju's present age in years?

Correct Answer
Marks

8

13

None of the above

D

1

IMT's hostel mess requires 60 kgs of rice every day except every $7^{\text {th }}$ day on which only 50 kgs of rice is required. If this continues, how many kgs of rice is required for 150 days starting from the first day?

9000 kgs

8790 kgs

8970 kgs

9890 kgs

None of the above

Correct Answer

Marks

	4	9	
6	20	$?$	6
5	39	51	10
	8	7	

B 32

C

D
28

E

Correct Answer	A
Marks	1

Owner of a branded shoe showroom earns 25% profit after giving 25% discount. Now, if he wants to give 10% discount, what would be his profit percentage?

A
30\%

None of the above

Correct Answer

Marks

